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EXECUTIVE SUMMARY
PFAS Environmental Toxic Substance Assessment

Purpose

Beginning in March 2018, the Pima County Health Department received community inquiries
regarding exposures to per- and polyfluoroalkyl substances (PFAS) via drinking water in Pima
County. There are historical local community concerns about man-made groundwater
contamination and the role of local government in addressing these concerns. This report seeks
to summarize the available local information and place it in the context of available research.

Pima County Health Department has requested an update to the original report. This updated
version seeks to summarize new local information and available research as of October 2019 to
August 2022.

PFAS are a class of over 12,000 man-made chemicals historically widely used in industrial
production of common household items such as non-stick pans, stain protection on fabrics,
upholstery, carpets, and even dental floss. More recent studies have demonstrated potential
detection in cosmetics, food, and clothing including in “green” products. PFAS is widely used in
military applications and is a key component of petroleum-firefighting foams. Due to these
practices, PFAS has contaminated surface and groundwater across the nation. PFAS
contamination has been identified in all 50 states.

Ingestion is the primary route of exposure for PFAS and it is estimated that 72% of the total
exposure is from food ingestion, 22% is from water consumption, and 6% is from dust ingestion.
Although food ingestion associated with consumer products typically accounts for the highest
exposure route, the purpose of this report is to discuss PFAS in the local public drinking water
systems, including a review of background information, presence in Pima County drinking water
systems, health effects, and mitigation strategies for personal exposure.

PFAS in Local Water Systems and Safety Regulation

PFAS are recognized by the US Environmental Protection Agency (US EPA) as emerging
contaminants of concern. Emerging contaminants are usually synthetic chemicals or
pharmaceuticals that are being detected in the environment due to improved analytical methods
or new uses. They can also be contaminants that are naturally occurring or that have been
measured in the environment for a long time but are associated with emerging health concerns.
In recent years, the US EPA has conducted environmental monitoring of PFAS in drinking water
sources and the Agency for Toxic Substances and Disease Registry (ATSDR) conducted a
toxicological profile for PFAS that was last updated in 2021. The National Academies of
Sciences, Engineering and Medicine (NASEM) released a report on guidance for PFAS
exposure, testing and clinical follow-up in 2022. Ongoing research has linked PFAS exposure
with adverse health effects.

PFAS’ presence in drinking water is a widespread issue that is not limited to a single county or
water provider. Even within Pima County, it is a complex picture built from reporting



information from multiple entities, local and federal government, including Marana Water,
Tucson Water, the Arizona Department of Environmental Quality, Davis-Monthan Air Force
Base, Arizona Air National Guard, Pima County Regional Wastewater Reclamation Department,
and the US EPA. PFAS has been detected in local groundwater by these entities in
concentrations from 12 to >10,000 parts per trillion, yet none of these wells are being served to
the public directly. Efforts are being made, even without federal regulation, to address these
concerns.

There are no PFAS national drinking water regulatory standards, known as a Maximum
Contaminant Level (MCL), which specifies the legal level at which these contaminants may be
acceptable in potable water. In March 2021, US EPA published a final determination to regulate
perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in drinking water.
They will propose the regulation by the end of 2022 with final rule anticipated for 2023. This
regulation will include both the enforceable MCL and non-enforceable Maximum Contaminant
Level Goal (MCLG).

On June 15, 2022 the US EPA published updated drinking water health advisory levels for
PFOA and PFOS (two substances in the PFAS group) in drinking water and established final
health advisories for additional substances from the PFAS group. These are hexafluoropropylene
oxide (HFPO) dimer acid and its ammonium salt (together referred to as “GenX chemicals”) and
perfluorobutane sulfonic acid and its related compound potassium perfluorobutane sulfonate
(together referred to as “PFBS”)

(two additional substances from the PFAS group). Health advisories are non-enforceable and
non-regulatory concentration recommendations below which consumption is thought to be
acceptable and not pose an elevated health risk. Health advisories are intended to inform local
officials on the health risk based on US EPA review of scientific studies. The current health
advisories are: 0.004 ppt, 0.02 ppt, 10 ppt, and 2,000 ppt for PFOA, PFOS, GenX and PFBS,
respectively.

The City of Tucson Water Department has adopted the internal operating target level of non —
detect (less than 2 ppt) for PFOA, non-detect (less than 2 ppt) for PFOS, 7 ppt for PFHXS, 7 ppt
for PFHpA, 420 ppt for PFBS, 200,000 ppt for PFHXA, and 10 ppt for GenX. It is important to
note that private drinking water wells are not regulated by US EPA and therefore those who rely
on a private well are encouraged to have their water tested for PFAS by an US EPA-approved
laboratory or by the Arizona Department of Environmental Quality Monitoring Assistance
Program.

PFAS Health Concerns

PFAS are of high environmental and health concern because they are highly persistent in the
human body, have high potential for exposure, and have many known or suggested adverse
health effects. PFAS exposures can occur through ingestion of contaminated drinking water,
food, dust, and the use of consumer products in our homes or at work that contain PFAS. The
relationship between PFAS exposure and adverse health outcomes is complex and continues to
be researched. To date, PFAS exposure has been associated with increased risk cardiovascular,
gastrointestinal, musculoskeletal, hematological, dermal, endocrine, immune, developmental,



diabetes, cancer, hepatic, renal, and reproductive disease, as well as adverse pregnancy and birth
outcomes. An analysis of disease burden and related costs has quantified the PFAS-attributable
disease costs in the US at $5.5 billion across five disease endpoints, with an upper estimate of
$62.6 billion. This report summarizes two hundred and sixty-six studies that suggest significant
relationships between exposure to PFAS substance(s) and a health outcome in humans.

Biomonitoring

A technique used to indicate exposure or effect of exposure to environmental contaminants is
biomonitoring. Biomonitoring measures chemicals, metabolites, and other proteins in bodily
fluids like whole blood, urine, breastmilk, and hair. Though it tends to be measure in serum and
plasma. PFOA and PFOS have been measured in serums as apart of US national health surveys
as early as 1999, and additional PFAS compounds have been added in more recent surveys. Only
the German Human Biomonitoring Commission has risk-based guidance levels for PFOA and
PFOS in plasma (comparable to serum). Results from US national surveys indicate that 99% of
the general US population has detectable PFAS levels in their blood and that levels of PFOA and
PFOS have decreased over the last 20 years. In the most recent survey, 70% and 55% of the
participants had levels of PFOA and PFOS below any level of concern. Recommended levels are
dependent on individual susceptibility. Though individual testing is not yet widely accessible for
the general public, ATSDR has developed PFAS exposure assessment technical tools that can
help local, tribal, territorial and state health departments to conduct PFAS biomonitoring
activities.

Clinical Guidelines

NASEM has created a report that provides clinicians with informed care recommendations,
exposure reduction and options/ considerations for patient testing for PFAS at the request of
ATSDR and NIEHS. The NASEM report provides a stepwise guide for clinicians that covers
identifying primary sources of exposure, staying up to date with local consumption advisories
and work alongside local occupational and safety professionals. Clinicians should prioritize
testing via serum or plasma concentration for patients that are determined to have elevated levels
of PFAS exposures. It is recommended that local governments continue to give guidance and
education materials for health authorities.

Vulnerable Populations and Risk Mitigation

Populations that are especially vulnerable to PFAS include fetuses, infants, and
immunocompromised individuals.

Individuals can take precautionary steps to protect themselves from PFAS exposure by avoiding
or replacing water sources with detectable levels of PFAS or using a home water treatment
options to reduce the concentration of PFAS in their drinking water. Replacement options should
be utilized with caution because alternative sources, like bottled water, are rarely monitored for
PFAS, meaning that the exposure is unknown. A few studies have measured PFAS in bottled
water at concentrations above the drinking water health advisories (range: 0.17-18.87 ppt). Some



home treatment systems are certified to remove PFAS from drinking water. These devices are
most commonly granular activated carbon (GAC) or reverse osmosis (RO) and can range in cost
from $65-$400. At this time, it is uncommon for stock refrigerator filters to remove PFAS,
however a few aftermarket refrigerator filters, and some pitcher and faucet-mounted filters do
remove PFAS. Effectiveness of these devices is based upon overall drinking water quality and
users maintaining the systems and changing the filters. Before purchasing a point-of-use device,
confirm that the product is certified by the National Sanitation Foundation (NSF) for NSF/ANSI
Protocol 53 or Protocol 58 for reverse osmosis. Additional information is available through Good
Housekeeping and NSF International.

Individuals can also reduce their exposures to PFAS by avoiding fabrics treated with water-
resistant treatments like Polartec, and Gore-tex, using stainless steel and cast- iron cookware
instead of non-stick cookware like Teflon, skipping optional stain-repellant treatment on new
carpets and furniture like Scotchguard, avoiding personal care products with PTFE or “fluoro”
ingredients, and eating less fast food and microwave popcorn as the wrappers and bags are often
coated in PFAS. ATSDR also recommends avoiding using water contaminated with PFAS for
any drinking, cooking, or activities where swallowing water may occur and avoiding
contaminated fish and game meat.


https://www.goodhousekeeping.com/health-products/g684/water-filters/
https://www.goodhousekeeping.com/health-products/g684/water-filters/
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List of Acronyms

11CI-PF30UdS 11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid
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NIST National Institute of Science and Technology
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Introduction: PFAS Background, Pima County Water Sources, and Drinking
Water Safety Strategies

Pima County Water Sources and Contaminants

Contaminants in drinking water sources may come from the natural environment, human
activity, or a combination of both. In Pima County, most drinking water comes from
groundwater, surface water, or a combination of the two. Surface water from the Colorado River
travels to Pima County via the Central Arizona Project (CAP) to supplement local groundwater
sources.! Contaminants can enter these source waters through point-source pollution (pollution
inputs that have discrete, identifiable sources) or non-point-source pollution (pollution inputs
with no concentrated, clearly identifiable source such as storm water runoff).? Source water
contaminants may exist naturally, exist naturally but increase due to human activity, or exist
solely from human activity.??

When considering chemical contaminants in drinking water sources, it is important to
remember that being a natural or man-made contaminant has no direct bearing on the
potential health impacts of such contamination.* Contaminants found in groundwater may be
of natural origin (e.g. dissolution of environmental lead or manganese into water sources) or
result from human activity (e.g. leaking underground tanks, such as septic or fuel tanks,
contaminants leaching from landfills, pesticide and fertilizer use, or contaminants discharged in
municipal wastewater streams).® Purely human-produced chemical pollutants are synthetic and
have usually been produced by manufacturing processes, industrial practices, and similar human
activities.> Chemicals that can cause adverse health effects may be of natural or man-made origin
and, therefore, it cannot be determined simply using source information what the level of
concern should be surrounding a potential contaminant.

Many unregulated chemicals may occur in drinking water systems. The concentration of these
chemicals, the dose, duration of exposure, personal vulnerability, and other sources of exposure
are essential to prioritizing hazardous chemicals. Contaminants of emerging concern are
unregulated chemicals that have increasingly entered the public awareness as more research and
laboratory detection methods become available. This does not imply that contaminants were
absent prior to public awareness since any chemical widely produced and used will likely be
released into the environment.® The US Toxic Substances Control Act allows 84,000 chemicals
on the market but has only tested the toxicity of around 1,000 of those chemicals and when a
chemical is determined to be dangerous to humans it is often replaced by another untested
chemical.® This has resulted in thousands of chemicals in our environment with very little
information about their safety. Similarly, we do not have methods for measuring many of these
chemicals in water. Methods for prioritizing emerging contaminants of concern are being
developed based on a wide range of factors including contaminant properties, water safety
context, health concerns, detectable levels and input from experts and stakeholders.” It is
important to remember that advances in research will continue to identify emerging
contaminants as time moves forward. Municipalities and individuals must take the most
informed steps possible to face these challenges as they arise.
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Per-and Polyfluoroalkyl Substances

Per- and polyfluoroalkyl substances (PFAS) are a class of human produced chemicals
which can enter the environment from many sources. The PFAS class is a highly prioritized
environmental concern because it is highly persistent in the human body and in the environment,
has high potential for exposure, and has many known/suggested adverse health effects. There are
over 12,000 individual chemicals within the PFAS family.®°® PFAS were first produced in 1947
for industrial use to create foams, including firefighting foams, and slick coatings.*® Home uses
for PFAS include non-stick pans, stain protection on upholstery, and coated dental floss.*
Recently, PFAS have been measured in a wide range of consumer products (e.g., clothing, food,
cosmetics), including “green” products, where they may have been intentionally added or are
present due to contamination during the manufacturing process.'? PFAS were designed
specifically to not break down and to be water and oil repellant in order to protect consumer
products. However, these same qualities are what make PFAS so persistent in the environment
and allow PFAS to travel through the environment indefinitely without breaking down.*3
Currently there is no single solution for breaking down PFAS. A group of researchers at
Northwestern University developed a process that causes two classes of PFAS compounds to fall
apart by using a combination of low temperatures, dimethyl sulfoxide and sodium hydroxide.*
The researchers are still studying ways to make this work outside of the lab at a larger scale.'*
PFAS are mobile in the environment, do not degrade readily under natural conditions, and
bioaccumulate and biomagnify (meaning it may accumulate in a living organism over time
and move upwards through the food chain)®® in wildlife and humans.1° PFAS have been
detected in 98% of human serum samples in widespread population studies in the US and in
remote environments such as the Arctic'®’. There is environmental contamination in all 50 US
states.’

PFAS chemicals are sorted into short and long chain structures. Long chain PFAS are persistent
in the body and environment, can bioaccumulate, and include two of the most-studied PFAS
substances: perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS).!8 Shorter
chain structures are often selected as the replacement chemicals for long chain PFAS that have
been banned or phased-out; however, some short chain PFAS such as perfluoroalkyl acids
(PFAAS) are mobile and extremely persistent in the environment, are even more difficult to
remove from water, and uncertainty surrounds their health impacts.'® Recently, some FDA studies
indicate that the toxicity of short-chain PFAS may have been under estimated.®2° Short chain
PFAS include perfluoroalkane sulfonic acids with carbon chain lengths of five or fewer and
perfluorocarboxylic acids with carbon chains lengths of six or fewer. Long chain PFAS include
perfluoroalkane sulfonic acids with carbon chain lengths of six or greater and perfluorocarboxylic
acids with carbon chain length of seven or greater.!® These structural differences are shown below
in Table 1.
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Table 1. Short and long chain PFAS chemical structures

Perfluoroalkane Sulfonic Acids Perfluorocarboxylic Acids
Short
F F F F
Chain QFFFFF 0\\....1.:1,:
OH-S-C-C-C-C-C-F C-C-C-C-C-C-C-F
" | | | | | / | | | | 1 |
O F F F F F OH FF F F F F
(or shorter) (or shorter)
éﬁ”_g OF F F F F F o FFFFTFTFFTF
aln ] I 1 | 1 | | -
OH-S-C-C-C-C-C-C-F /C-C-C-C‘ C-C-C-C-F
OF FFFFF OH F F F FF F F
(or longer) (or longer)

Short chain replacement PFAS in manufacturing include GenX as a replacement for PFOA, and
PFBS as a replacement for PFOS.?* GenX chemicals may be used in similar ways as PFOA by
manufacturers, but EPA does not have information from manufacturers on which commercial
products rely on GenX chemicals. GenX chemicals have been detected in surface water,
groundwater, drinking water, rainwater, and air emissions.?* Following the voluntary phase out
by US manufacturers of PFOS in 2002, PFBS was used as the replacement. PFBS have been
detected in surface water, wastewater, drinking water, dust, floor wax, carpeting and carpet
cleaner, and more.??

PFAS are released to the environment during industrial production, firefighting foam application,
wastewater treatment plant discharge, biosolids land application, and surface waste (i.e. landfills)
leaching into groundwater.?® PFAS can be found in wastewater treatment plant (WWTP) effluent
if PFAS chemicals are present in the influent. Evidence suggests that PFAS associated
biotransformation can occur under multiple conditions, including in wastewater treatment
process, aerobic soils, humans, animals, plants, and marine and freshwater systems.?4-2’
Vulnerable drinking water systems are typically in close proximity to land contamination sites
surrounding facilities using or manufacturing PFAS, firefighting training areas, military bases,
and wastewater treatment plants.6282% PEAS has also been detected in water with no obvious
contaminant source.®%3! A 2020 study conducted in Pima and Pinal County found that soils
amended with Class B sewage biosolids had PFAS concentrations, including large long-chain
PFAS, that were fairly low and ranged from non-detect to a mean concentration of 4.1 ug/kg.
PFAS detected in biosolids are not always detected in soil. The authors from the study also found
that biosolids had PFOS concentrations ranging from 14-36 ug/kg, and PFOA concentrations
less than 1.2 pg/kg. However, if biosolids with a much larger concentration of PFAS are used,
such as from an industrial facility, there could be concern related to long-term application to soil.

Drinking water is just one source of PFAS exposure in day-to-day life. A person can be
exposed to PFAS in food, household products, cosmetics, clothing, the workplace, and animals
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used as food sources.®? PFAS are also present in pharmaceuticals and medical devices.®® For
example, Egeghy and Lorber created a scientific model based on extensive real-world data which
estimated that a typical adult intakes 160 ng PFOS/day with 72% of exposure due to food
ingestion, 6% from dust ingestion, 22% due to water ingestion.®* Another study determined
PFAS exposure primarily occurs through direct ingestion of food and water, indirect dust
ingestion, and hand-to-mouth transfer from treated carpets.®® Skin absorption and outdoor and
indoor inhalation each accounted for less than 1% of PFOS exposure. Evidence is too limited to
draw meaningful conclusions; however, it was found that in regions with known PFAS
environmental contamination some milk, cheese, and produce samples had detectable PFAS
present. In other testing, not limited strictly to contaminated areas, produce, meat, seafood, cake,
and raw milk had PFAS concentrations above the lower limit of quantification.*® Food
packaging, including grease-resistant paper, fast food containers/wrappers, microwave popcorn
bags, pizza boxes, and candy wrappers, commonly contains PFAS. A detailed summary of the
sources of PFAS exposure was produced by the Agency for Toxic Substances and Disease
Registry and can be found here. To most effectively reduce PFAS exposure overall it is also
important to consider reducing PFAS exposure through limiting home use of products that
contain PFAS. Although this report focuses on man-made water contamination, other methods to
reduce PFAS exposure are briefly addressed in the risk mitigation section of this report.

Drinking water regulations are established by the US EPA and enforced locally by the
Arizona Department of Environmental Quality (ADEQ).2 PFAS is currently unregulated in
drinking water, but the US EPA has already taken precautionary measures to address the
growing concern regarding PFAS in drinking water, including a drinking water health advisory,
described in the “US Environmental Protection Agency - Drinking Water Health Advisories
(DWHA)” section of this report.3” In March 2021, US EPA published a final determination to
regulate perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) in drinking
water. They will propose the regulation by the end of 2022 with final rule anticipated for 2023.
This regulation will include both the enforceable MCL and non-enforceable Maximum
Contaminant Level Goal (MCLG).%8:3°

In 2002, the US EPA published a Significant New Use Rule (SNUR) regarding 13 chemicals in
the PFAS group to be included under the Toxic Substances Control Act (TSCA).*® Under TSCA,
manufacturing and importation of PFAS must be reported. Additionally, part of the SNUR
development process involved the US EPA working with 3M Corporation to voluntarily
discontinue the production of PFOS in 2002.%° The US EPA also developed another SNUR to
have additional PFAS, including PFOA, reported similarly to PFOS.*4! The US EPA 2010/2015
PFOA Stewardship Program was established by the US EPA in 2006 to work with eight leading
PFAS-producing companies to commit to a 95% reduction of PFOA by 2010 and eliminate
PFOA from emissions and products by 2015.#? Globally, China is one of the few remaining
producers and consumers of PFOS.*® With research ongoing, there is some evidence to suggest
that import and use of goods from countries with ongoing PFAS production can lead to PFAS
exposure and environmental release in countries that have discontinued its production.**
Following the original phasing out of certain PFAS, manufacturers developed replacement
perfluorinated compounds that are similar but have structural differences to decrease
bioaccumulation and environmental persistence.'® The US EPA’s New Chemicals Program
(NCP) under the TSCA reviews PFAS substitutes and restricts PFAS use to improve
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understanding of the chemicals’ fate and effects.*® On October 18, 2021, the EPA released its
PEAS Strategic Roadmap: EPA’s Commitments to Action (Strategic Roadmap) which outlines
future actions and timelines that will safeguard public health, protect the environment and hold
polluters accountable. The three main guides of the Strategic Roadmap are to research PFAS,
restrict PFAS from entering our air, water and land and to clean up PFAS contamination where
it already exists.*® Key actions that have already been completed under the roadmap include:
issuing the fifth Unregulated Contaminant Monitoring Rule (UCMR) including 29 PFAS; issuing
the first Toxic Substances Control Act PFAS test order; adding five PFAS to EPA’s
contaminated site cleanup tables; publishing draft aquatic life water quality criteria for PFOA
and PFOS and a memo to proactively address PFAS in Clean Water Act permitting; and
publishing a new draft total absorbable fluorine wastewater method.*® On April 27, 2021, the
EPA established the Council on PFAS which aims to better understand and reduce the risks of
PFAS.

In addition to the Strategic Roadmap, on June 15, 2022, EPA announced that it is inviting states
and territories to apply for $1 billion, the first of $5 billion in Bipartisan Infrastructure Law grant
funding.*’ This funding can be used to address PFAS and other emerging contaminants in
drinking water, specifically in small or disadvantaged communities through actions such as
technical assistance, water quality testing, contractor training, and installation of centralized
treatment technologies and systems.

On August 26, 2022 under the Strategic Roadmap, the EPA announced a proposal to designate
two of the most widely uses PFAS as hazardous substances under the Comprehensive
Environmental Response, Compensation and Liability Act (CERCLA).*® This designation will
increase transparency around the release of PFAS and will help hold polluters accountable for
cleaning up their contamination.

Overall, the reduction in the manufacturing and importation of PFAS in the United States
has been effective in reducing human serum PFOS and PFOA levels.!”#! Surveys have
studied certain sub-populations and identified the following PFAS types in human serum: PFOA,
PFAS, PFOS, PFDeA, PFHXS, Me-PFOSA-AcOH, PFBuUS, PFHpA, PFNA, PFUA, and
PFDoA.**-%2 Reductions of PFOS and PFOA levels in human serum have been reported as
production has been phased out.}’#!

PFAS and Water Safety Guidelines
Safe Drinking Water Act (SDWA) and Unregulated Contaminant Monitoring Rule (UCMR)

Beyond the SNUR, the US EPA uses the Safe Drinking Water Act (SDWA) to propose potential
contaminants for regulation.®® The process to get a contaminant regulated using the SDWA
happens under the National Primary Drinking Water Regulations (NPDWR). Step one of a
NPDWR establishment is to identify contaminants. The SDWA specifies that the US EPA must
find that the contaminant is possibly linked to adverse health effects, occurs frequently, and there
must be a feasible plan for health risk reduction for Public Water Systems (PWS).*
Contaminants under consideration are placed on a Contaminant Candidate List (CCL). The US
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EPA uses the CCL in its selection of contaminants for a particular Unregulated Contaminant
Monitoring Rule (UCMR) cycle.>*

The UCMR is a tool to collect data for suspected drinking water contaminants that do not
have current health-based regulations.>* The reports from the UCMR program provide
drinking water occurrence data for monitored contaminants and is a primary source of
occurrence and exposure information that the US EPA uses to make regulatory decisions for
emerging contaminants.> Different contaminants are monitored in each UCMR cycle. The
UCMR Cycle 3 monitored, among other contaminants, PFOA, PFOS, PFNA, PFHXS, PFHpA,
PFBS from 2013 to 2015. A breakdown of relevant data from the UCMR 3 is included in the
“PFOA, PFOS, PFHpA, and PFHXS Detection in Public Water Systems in Pima County and
Across Arizona” section of this report. PFAS were not included in UCMR Cycle 4. UCMR
Cycle 5 will begin in 2023 and includes 29 PFAS, including: 11CI-PF30UdS, 9CI-PF3ONS,
ADONA, HFPO DA, NFDHA, PFBA, PFBS, 8:2FTS, PFDA, PFDoA, PFEESA, PFHpS,
PFHpA, 4:2FTS, PFHXS, PFHXA, PFMPA, PEMBA, PFNA, 6:2FTS, PFOS, PFOA, PFPeA,
PFPeS, PFUNA, NEtFOSAA, NMeFOSAA, PFTA, and PFTrDA.%®

US Environmental Protection Agency - Drinking Water Health Advisories (DWHA)

The US EPA publishes non-regulatory, non-enforceable health advisories under authority of the
SDWA.® The US EPA health advisories are meant to provide technical information about
contaminants that are known to occur in drinking water and can cause human health effects.*
Scientifically supported acceptable concentrations of PFAS in drinking water have evolved over
time as more evidence becomes available. Provisional US EPA health advisories for drinking
water levels of PFOA and PFOS were 400 and 200 ppt, respectively.>’° As research evolved,
those advisory levels have decreased.

PFAS do not have an established national or state drinking water standards, but the US
EPA has created a DWHAs for PFAS. On June 15, 2022, the EPA announced four drinking
water health advisories for PFAS substances.®® The release of these new health advisories is
part of the PFAS Strategic Roadmap. EPA’s updated drinking water health advisories for PFOA
and PFOS to replace the health advisories issued back in 2016. The health advisory of 2016 was
based on evidence available at the time. However, new studies and toxicity values have indicated
that the levels at which negative health outcomes could occur are much lower than previously
understood.®® The new health advisories are based on analyses conducted by US EPA that
determined that the most sensitive non-cancer health effect is decreased immunity (i.e.,
decreased serum antibody concentrations after vaccination) in children in a human epidemiology
study.%%2 The new health advisory for PFOA is based upon suppression of tetanus vaccination in
seven year old children, while the new health advisory for PFOS is based upon suppression of
diptheria vaccination in seven year old children.®:52

EPA issued new health advisories for perflurobutane sulfonic acid and its potassium salt (PFBS)

and for hexafluoropropylene oxide (HFPO) dimer acid and its ammonium salt (GenX
Chemicals).®®
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Table 2. 2022 Health Advisories for the four PFAS

Chemical Health Advisory Value Type of health advisory
PFOA 4x10°/L or 0.004 ppt Interim updated health advisory
PFOS 2x10°%/L or 0.02 ppt Interim updated health advisory

GenX Chemicals 0.00001 mg/L or 10ppt Final lifetime health advisory
PFBS 0.002 mg/L or 2,000 ppt Final lifetime health advisory

The current minimum reporting limits from EPA Analytical Method 533 are 4,4,5 and 3 ppt for
PFOA, PFOS, GenX and PFBS, respectively.®® It is important to remember that the lower the
level of PFAS concentrations, the lower the risk. Therefore, the risk of drinking water with PFAS
below the minimum report limit is lower than drinking water with PFAS above the minimum
reporting limit, even if it is above the health advisory.

It is anticipated that US EPA will finalize a regulation in 2023 that will include both the
enforceable MCL and non-enforceable MCLG.*® The MCLG is the maximum level of a
contaminant in drinking water at which no known or anticipated adverse effect on the health of
persons would occur, allowing an adequate margin of safety.® It is anticipated that this will be
set close to the current health advisories. The enforceable MCL is set as close as feasible to
MCLG. US EPA considers the ability to measure and treat a contaminant as well as costs and
benefits in setting the enforceable standard, and it is likely to be above the minimum reporting
limits. %

Agency for Toxic Substances and Disease Registry (ATSDR) — Minimal Risk Levels

ATSDR is a federal public health agency under the US Department of Health and Human
Services which focuses on the public health effect of hazardous substances in the
environment.®® In May of 2021, the ATSDR released a final toxicological profile for
perfluoroalkyls.®* This thorough document provides detailed background, toxicological and
epidemiological studies findings, environmental studies, and other relevant information about
PFAS (including PFOA and PFOS). The ATSDR report focuses on twelve specific PFAS
compounds. The ATSDR health-based Minimal Risk Levels (MRLs) provide an estimate of the
amount of a chemical a person can eat, drink, or breathe each day without detectable risk to
health.®® The ATSDR has set MRLs, the dose (mg/kg/day) that a person can ingest or inhale
each day without a likely risk to health, for some PFAS chemicals.* MRLs are intended to
serve as screening levels and do not represent regulatory or action levels for ATSDR. Of the
many substances in the PFAS class, some have oral MRLs for intermediate risk levels, which are
summarized in Table 3. Based upon the size of and average child and an average adult, and
average drinking water consumption these MRLs can be converted into drinking water guideline
levels.®
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Table 3. Oral MRLs for intermediate risk levels for select substances within the PFAS class as
defined by ATSDR®® These values have been converted to suggested drinking water guidelines based upon
the size of an average child and an adult and their consumption.5®

PFAS Substance MRL Child Adult
(mg/kg/day) (ppt) (ppt)
Perfluorooctanoic acid (PFOA) 3x10° 21 78
Perfluorooctane sulfonic acid 2 % 1076 14 52
(PFOS)
Perfluorohexane sulfonic acid 2 % 10 140 517
(PFHXxS)
Perfluorononanoic acid (PFNA) 3x10° 21 78

These MRLs are based on a study incorporated into the ATSDR toxicological profile that
examined in-utero and postnatal exposure to PFOA in mice and demonstrated that PFOA
accumulated in bones, affected bones cells, and indirectly impacted bones through increased
body weight and lessened activity.®’

At this point in time, there is no federal government requirement to regulate PFAS in drinking
water. In June of 2022, the EPA released health advisories for four PFAS compounds in drinking
water. However, the health advisories are non-enforceable and non-regulatory levels that
represent the concentration of a contaminant that are not expected to cause adverse health effects
when at or below the advisory value. As the evidence suggesting that PFAS can cause serious
adverse health effects increases, many states have or are in the process of creating PFAS
standards. Arizona has taken no such action. Our local municipalities are voluntarily setting
targets for PFAS concentration in their drinking water. Tucson Water had originally volunteered
an interim internal operating target of 18 ppt for PFOA and PFOS and 47 ppt PFHxS and
PFHXA, individually or in combination. Since the new EPA health advisory was released in June
2022 they have responded by updating their internal targets. These new targets are non —detect
(less than 2 ppt) for PFOA, non-detect (less than 2ppt) for PFOS, 7 ppt for PFHXS, 7 ppt for
PFHpA, 420 ppt for PFBS, 200,000 ppt for PFHXA, and 10 ppt for GenX.®® Town of Marana’s
operational target at both of their water treatment campuses (Picture Rocks and Airline/Lambert)
is 17.5 ppt. This target did not change after the updated health advisory was released in June
2022. Samples taken from entry point into the distribution are consistently reported as non-
detect, which means they are below the practical quantitation limit of 2 ppt using EPA Analytical
Method 537.1. For reference, when thinking about the concentration targets, 1 ppt is equal to
one drop of water in a pool as big as a football field and three stories (43 feet) deep.5®

Potential Adverse Health Effects Associated with PFAS

Adverse Health Outcomes

While much research still needs to be conducted, there have been an increasing number of
studies documenting adverse health effects among the US population associated with exposure to
PFAS. Of greatest concern are studies suggesting that PFAS exposure may cause cancer and
developmental effects in humans. Animal studies have also shown adverse health effects at ever-
lower levels of PFAS exposure. While the human health evidence is not clear, there is enough to
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warrant larger epidemiological investigations and for the establishment of drinking water
regulations while the more detailed studies are being conducted. Recently researchers quantified
disease burdens and economic costs associated with PFAS exposures in the US in 2018.7 They
estimated that the PFAS-attributable disease costs in the US to be $5.5 billion across five
primary disease endpoints with an upper estimate of $62.6 billion.”” While there are some
uncertainties in their work, this is likely to be an underestimate of the potential economic
implications from this disease burden as the analysis does not include COVID or reduction of
vaccine effectiveness in children with is the primary endpoint for the drinking water health
advisories.”

The associations between PFAS contaminated drinking water and adverse human health effects
are still being assessed including very large epidemiological investigations currently being
conducted by ATSDR.” Most studies to date have focused on assessing the associations between
human serum levels of PFAS and health outcomes, and not necessarily the associations between
drinking water exposures and health outcomes. However, it is well documented that drinking
water is an important source of human exposure to PFAS particularly following the phase out of
PFOA and PFOS from consumer products.’>"* The ATSDR toxicological profile for PFAS
summarizes possible health outcomes resulting from PFAS exposure.*® Following publication of
the ATSDR Toxicological Profile in 2021, the National Academies of Sciences, Engineering and
Medicine (NASEM) published “Guidance for PFAS Exposure, Testing, and Clinical Follow-up
(2022).”° A brief overview of the adverse health effects associated with some PFAS substances
based on the ATSDR profile and the NASEM report is illustrated in Table 4 and accompanied by
a written summary. According to the ATSDR toxicological profile and the NASEM report, there
are 266 human studies that document a statistically significant association between PFAS levels
in serum and health outcomes in humans. The majority of these studies are based upon PFAS
levels measured in serum.

Table 4 shows each health outcome category and each of the 12 specific PFAS chemicals
summarized in the ATSDR report or the NASEM report. Under each PFAS chemical, the
number of studies that found a significant association between the amount of that PFAS chemical
measured in serum and harmful health effects are marked by “HR” (i.e., greater PFAS levels in
blood correlated with increased risk for bad health outcomes). The number of articles that found
a significant association between the amount of that PFAS type in the body and a lower risk of
the health outcome are marked by “LR”. In some cases, significant associations were determined
between PFAS levels in the body and certain health markers like hormone levels, but it is not
clear if this is harmful or not harmful for your health and this depends on the particular study.
The number of these studies is indicated by “NC”. Associations do not necessarily equate with
certainty to causal relationship. However, as evidence of correlations are built up over time, the
causal relationship becomes more strongly supported. A more detailed table and the list of
references are included in Appendix 1.

The NASEM committee reviewed epidemiological studies published after 2018 in addition to
those in the ATSDR report and synthesized the data into four categories of association: sufficient
evidence of an association, limited suggestive evidence of an association, inadequate or
insufficient evidence of an association, and limited suggestive evidence of no association.® The
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committee found sufficient evidence of an association for the following diseases and health
outcomes:

Decreased antibody response (in adults and children)

Dyslipidemia (abnormally elevated cholesterol or lipids in blood) (in adults and children)
Decreased infant and fetal growth

Increased risk of kidney cancer (in adults)

The committee found limited or suggestive evidence of an association for the following
diseases and health outcomes:

Increased risk of breast cancer (in adults)

Liver enzyme alterations (in adults and children)

Increased risk of pregnancy-induced hypertension (gestational hypertension and
preeclampsia)

Increased risk of testicular cancer (in adults)

Thyroid disease and dysfunction (in adults)

Increased risk of ulcerative colitis (in adults)
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Table 4. Summary of human health outcomes associated with short- and long- chain PFAS

chemicals
PFAS Type
Long-Chain Short-Chain
PFOA | PFOS | PFHxS | PFNA | PFDeA | PFUA | PFDoA | PFOSA | PFHpA | PFBS | PFBA | PFHxA
Cardiovascular 16 HR 3HR 5HR 2HR 3HR
disease 11r | MR | 1 \gr | 31r | 3R | 11g | #4HR | 3HR | 1| ¢ SR 4R
Gastrointestinal 1HR
5 HR
Musculoskeletal 6 HR 1LR 2 HR 4 HR 2 HR
7HR | 3HR
Endocrine | 19NC | 17Nc | SHR 1ionc | PR | sne | oeNe INC | 1INC
5 LR 6 NC 5NC
30HR | 14HR | 11HR | 1HR | 7HR | 4HR | 6HR
A 50LR | 4lR | 1LR | 1LR | 1LR | 4R | 11r | 1HR | 1HR Sl LAk
20HR | 19HR | 7HR | 10HR
Reproductive | 13NC | 8NC | 1NC | 2NC i HE ‘1‘ HE i HE 1HR |1LR 1HR 1NC
3LR 2LR | 1LR
19HR | 21HR | 5HR | 5HR | 4HR | 1HR | 2HR
gi’r‘iﬁ”gﬂfé’oi:‘gs 6NC | 8NC | 3NC | 4NC | 2NC | 2NC | 1NC i 'CS % ECR: 1LR 1HR
2R | 2R | 3LR | 1LR | 1LR | 2LR | 1LR
Developmental ;ES 6 HR 4 HR 4 HR 3HR 1HR 1HR
. 20HR | 14HR | 5HR | 6HR 1HR
Diabetes 2R | alr | atr | air | 2HR | 5[ R | 1HR 1HR 1HR
12HR | 6HR
Cancer 2 LR 2 LR 3HR 1HR 2 HR 2 HR 2 HR
60HR | 29HR | 10HR 123” 7HR | 2HR
Hepatic 3NC | 5NC | 2NC | , o | 3NC | 2NC 1HR 1HR
41R | 3LR | 1LR 1LR | 1LR
1LR
Renal 17HR | 9HR | 3HR | 3HR | 1HR 1HR
Respiratory 7HR i EE 3HR 5HR 2 HR 1HR 2HR
. 1HR | 1HR
Neurological 2 NC 1LR 1HR 1HR

The numbers in each column represents the number of studies found to have a significant
association between PFAS type and the indicated health outcome

HR (Higher risk): greater PFAS levels in blood correlated with significantly increased risk of bad
health outcomes

LR (Lower risk): greater PFAS levels in blood correlated with significantly lower risk of health
outcomes

NC (not clear): PFAS levels are significantly associated with other health measurements (e.g.,
hormone levels) but it is not clear if this is harmful or not harmful for your health.

Potential Carcinogenic Health Outcomes

Exposure to various PFAS chemicals has been associated with cancer outcomes in human
populations.>®">7¢ While a direct causal relationship between PFAS and cancer has not been
determined, many studies have found strong evidence supporting a connection between the two.
PFOA exposure has been positively associated with testicular cancer,”” kidney cancer deaths,’®"°
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and prostate cancer deaths (i.e., greater PFOA exposure will result in a greater likelihood of these
cancers).8 PFOA has been negatively associated with colorectal cancer8! and bladder cancer
(i.e., greater PFOA exposure levels have been associated with decreased likelihood of these
cancers).22 PFOS exposure has been associated with increased risk of bladder cancer® and breast
cancer®* and has been associated with decreased risk of colorectal cancer.8* PFHxS exposure has
been associated with increased prostate cancer deaths® and breast cancer.2® PFUA exposure has
also been associated with increased prostate cancer deaths.®> PFOSA exposure has been
positively associated with breast cancer.®® Given these conflicting results and that we are
exposed to mixtures of these compounds, not just one PFAS chemical at a time, makes it difficult
to establish causality. However, these results are suggestive that PFAS exposures likely increase
the rates of some cancers in the population.

Potential Non-Carcinogenic Health Outcomes

Various PFAS chemicals have been associated with certain kidney outcomes. Increased
levels of serum uric acid (a potential marker of kidney disease) has been associated with
exposure to PFOA 2792 PFOS,899092 gnd PFHxS.% PFOAB888991.9394 and PFOS®8%3 exposure has
been positively associated with increased hyperuricemia (elevated uric acid in blood) risk.
PFOA,%93% pFQS, 90.9395 pPEHxS % PFNA® exposure have been associated with reduced
glomerular filtration rates (i.e., eGFR/GFR). PFOA®% and PFOS® have been associated with
increased chronic kidney disease.

Certain PFAS have been associated with possible endocrine effects. Triiodothyronine (T3),
thyroxine (T4), and thyroid stimulating hormone (TSH) are markers tested to indicate thyroid
health.% In some studies, PFOA®” and PFOS®® exposures have been associated with increased
TSH, however, other studies have found PFOS, PFNA,% PFDeA,* PFUA,*® and PFDoA® to be
associated with decreased TSH. Certain studies have shown an association between PFOA and
PFOS exposure and increased T3, FT3, or T3 uptake. Alternatively, other studies have found
PFOA,% PFOS,1% PFDeA,*® PFUA, % and PFDoA% exposure to be associated with decreased
T3, FT3, or T3 uptake. PFOA exposure was associated with increased risk of thyroid disease in
women in one study.!%? The same study found increased thyroid medication use in men.1%2
Another study found an association between PFOS and PFHXS exposure and increased risk of
subclinical hypothyroidism, an association between PFHXS exposure and increased risk of
subclinical hyperthyroidism, and an association between PFOA exposure and decreased risk of
subclinical hyperthyroidism.'% Yet another study found an association with increased risk of
functional thyroid disease and PFOA exposure.'% Because both increased levels and decreased
levels of hormones in the body can affect your health, it is not clear what the significant
associations between PFAS exposures and these hormone levels mean for long-term health risk.
It is clear, from these groups of studies, that PFAS exposure is associated with changes to
hormone levels in the body.

PFAS exposure has been associated with many aspects of immune health. PFOA, 10510
PFOS,105-107 pEHxS, 105106 pEN A 105106 pEDeA 105106 pEDA 10° and PFBUS!® have been
associated with increased asthma diagnosis or severity. One study found associations between
PFOA, PFOS, PFNA, PFDeA, and PFDoA exposure with increased levels of serum
immunoglobulin E concentrations, absolute eosinophil counts (AEC), and eosinophilic cationic
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protein (ECP) concentrations and an association between PFHXS exposures and increased AEC
and ECP concentrations.1% Decreased levels of tetanus antibodies following vaccination were
associated with and PFOA,%® PFHxS,**® PFUA, % and PFDoA concentrations.''® One study saw
an association between PFOA and PFNA exposures and number of common cold episodes, as
well as an association between PFOA and PFHXS exposures and number of gastroenteritis
episodes, and associations between PFOA, PFOS, PFHxXS, and PFNA exposure and decreased
rubella antibody levels following vaccination.*'! PFOA is associated with reduced seroprotection
from influenza A H3N2 virus.> Higher I1L-4 or IL-5 T-helper cytokine levels are associated with
PFOA,% PFNA,!% PFBuUS exposure.1%112 |n light of the COVID-19 pandemic, many studies
looked at the associations between PFAS exposure and COVID-19 outcomes. Higher PFBA
plasma levels have been associated with a more severe disease outcome, elevated risk of
hospitalization, and admission to the ICU.!'3 The NASEM report highlighted studies establishing
links between COVID-19 and PFAS exposure. This exposure was associated with a slightly
increased risk of infection rates and disease severity, while significant findings were not found
for COVID-19 mortality. All listed studies were ecological, therefore more should be conducted
to establish the impact of exposure on infection response.®

PFAS exposure has been associated with developmental effects in children. Lower levels of
mental development indices in 6-month-old female infants was associated with prenatal PFOA
exposure.!* A separate study found that increased PFOA exposure was associated with
increased full-scale 1Q along with decreased ADHD indicators.!'® Interestingly, PFOA exposure
has been associated with increased executive function scores when evaluated by the mother but
decreased scores when evaluated by the teacher.''® One study found an association between
PFOA, PFOS, and PFHxS exposure and increased risk of ADHD! but another study found
PFOA exposure was associated with decreased risk of ADHD.!8 One study found an association
between prenatal PFOA exposure and being categorized as hypotonic which includes infant
qualities such as reduced muscle tone.*'® PFOA exposure was associated with reduced rates of
externalizing behavior (negative outward behavior in response to their environment) in boys.?°
Prenatal exposure to PFOS and PFOA had an association with increased rates of hyperactive
behavior.'?! A separate study found that infants born to mothers with greater PFOS levels were
slightly more likely to sit independently later.!?> PFOS, PFHXS, PFNA, PFDeA, and PFOSA
have been associated with lower scores of children’s performance when performing a task that
requires behavioral inhibition.'?® PFOS has been associated with reduced rates of learning
problems 118

Multiple PFAS chemicals have been linked with reproductive and pregnancy outcomes.
PFOA, 124125 pPFQS, 124 and PFHxS'% exposure have been associated with reduced fecundity.
PFOA, 124126 pFQS 124126 gnd PFHxS!? exposure have also been associated with increased
infertility. PFOA is associated with higher levels of prolactin (the hormone which triggers breast
milk production) in serum of males.'?’” A separate study reported associations in males between
PFOA exposure in utero and lower sperm count and concentration as well as higher levels of two
reproductive hormones: LH and FSH. The same study found no association PFOS exposure or
any of the mentioned parameters.*?® Another study found an association between PFOS and
PFUA exposure and lower levels of FSH hormone.!? Increased testosterone levels are associated
with increased PFOA exposure and decreased PFOS exposure.*?®*3! There was an association
between PFOA exposure and higher levels of the sex hormone-binding globulin.}?® There were
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associations between increased rates of the hormone estradiol and PFOA™? and PFNA??
exposures and an association between lower levels of estradiol and PFOS exposure.'3:133 PFQS
exposure has been associated with increased rates of pre-term birth, small size for gestational
age, and low birth weight and associated with decreased gestational age, birth weight, and head
circumference.**13% PFNA and PFDeA exposures were both associated with increased rates of
miscarriage before 12 weeks.'%

There are mixed results on the risk of various musculoskeletal outcomes and PFAS
exposures. One study found associations between PFOA exposure and increased osteoarthritis
risk and PFOA, PFHXS, and PFNA exposures with increased osteoporosis risk. The same study
found associations between PFOS exposure and decreased osteoarthritis risk as well as PFOA,
PFOS, and PFNA exposure and lower bone mineral density.®” Another study found associations
between PFOA exposure and osteoarthritis risk and osteoporosis risk.'

Multiple studies link PFAS exposures with hepatic health outcomes. PFOA,87112:130,139-147148
PFOS,112:141.149-151 pEHx g 142 pENA, 112144 PEDeA, 144 and PFUAM? are all positively associated
with total cholesterol.1*8 PFOA,112130143-147.149 ppQg 112,149,150 pEHy S 142 and PFNA*4 exposure
have been associated with increasing levels of LDL (“bad” cholesterol). PFOS#81%2 and

PFDeA 4148 exposure have been associated with higher levels of HDL (*good” cholesterol). At
the same time, PFOA®3 and PFOS™™ exposure have been reported to have an association with
lower levels of PFOS levels have been associated with lower ratios of total cholesterol to HDL
levels.15?2 PFOA, 12147154 pEQS 15115 and PFNAM? exposures have all been associated with
higher triglyceride levels. PFOA has been associated with both increased**? and decreased*®
associated with bilirubin levels (increased bilirubin can be a marker of liver issues).
PFOAL30.156.157 and PFOS™’ exposure have been associated with increased levels of gamma-
glutamyl transferase, an enzyme that can be elevated in blood when liver or bile duct disease is
present. PFOA has been positively associated with a2 globulins (used as markers of many types
of disease).8” PFOA0153.157 and PFOS®11% exposure have also been associated with higher
levels of aspartate aminotransferase (AST); elevated AST in the blood can be a marker of liver
damage. Finally, PFOA®>158 and PFOS®1157.1%8 exposures have been associated with increased
levels of alanine aminotransferase (a marker of liver disease).

Multiple studies have reported PFAS exposures associated with cardiovascular effects. Two
studies have reported that PFOA exposure was associated with increased risk of cardiovascular
disease.”>%2 PFOA™ and PFOS¢%16! exposures have been associated with increased risk of
stroke and increased carotid intima media thickness (a measure used to assist in diagnosis of
carotid atherosclerotic vascular disease®?). PFOA exposure has been positively associated with
increased risk of angina, myocardial infarction, peripheral arterial disease, systolic blood
pressure, hypertension risk,’>163164 cerebrovascular disease,®® and pregnancy-induced
hypertension.® PFOS'® and PFUA® exposures have been associated with increased and
decreased risk of pre-eclampsia, respectively. Lastly, PFHpA exposure has been associated with
increased risk of coronary artery disease.*®’

PFAS exposure has been associated with various diabetes-related outcomes. One study

found associations between PFOS exposure and increased glucose intolerance, fasting blood
glucose, diabetes, and glycated hemoglobin. Decreased glucose intolerance was associated with
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exposure to PFOA, PFNA, and PFUA. 18 Decreased fasting blood glucose was associated with
PFOA and PFUA and decreased risk of diabetes was associated with PFNA and PFUA. %8 Two
separate studies found PFOA to be associated with increased rates of diabetes deaths. '8

One study demonstrated an association between PFOS exposure and increased gallstone
formation and gallbladder inflammation.®°

Current On-going PFAS Epidemiological Studies

The University of Arizona’s HEROES research project includes thousands of adult essential
workers and children across the state of Arizona, with more than half from Pima County. From
blood collected primarily for SARS-CoV-2 (COVID-19) antibody analysis, a separate aliquot is
set aside following each blood draw for potential PFAS analysis. Selected sera from at least 2000
HEROES participants will be analyzed for PFAS concentrations. The New Jersey Department of
Health is the laboratory used by HEROES-RECOVER for PFAS analyses, but additional
laboratories may be selected based on special analytic needs. The association of serum PFAS
concentrations with COVID-19 endpoints such as but not limited to severity of illness, antibody
concentrations and vaccine effectiveness will be evaluated.

The Pease Study is the first site of the Multi-Site study. This study examines the human health
effects of PFAS exposure through drinking contaminated water at the Pease International
Tradeport in Portsmouth, New Hampshire.1® According to ATSDR, the Pease Study findings
will provide a better understanding between PFAS exposure and health outcomes and will be
applied to other communities across the nation. As of December 2021, the study enrollment has
ended; The CDC and ATSDR are writing the final report, processing and analyzing blood and
urine samples and mailing individual results to participants.1’

The Multi-Site Health Study (MSS) is a coordinated study by the CDC and ATSDR to examine
the health effects of exposure to PFAS in communities across the United States.!* According to
ATSDR, the expected outcome of the MSS is to provide a better scientific understading about
the relationships between PFAS exposure via drinking water and certain health outcomes among
differing populations. The MSS is expanding on the work that began with the Pease Study in
2019. The data collected at each of the 7 MSS sites will be combined with data from the Pease
Study to allow researchers to explore health outcomes from PFAS exposure.!’* Recruitment for
this study began in fall 2021 with a target sample size of 2,100 children and 7,000 adults across
all sites (Table 5).1"%
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https://www.atsdr.cdc.gov/pfas/activities/studies/multi-site.html?CDC_AA_refVal=https%3A%2F%2Fwww.atsdr.cdc.gov%2Fpfas%2FMulti-Site-Health-Study.html#about

Table 5. Multi-Site Health Study Partners and Locations

Partner

Site Location

Colorado School of Public Health, University
of Colorado, Anschutz Medical Campus

El Paso County, Colorado

Michigan Department of Health and Human
Services

Parchment/Cooper Township, Michigan
Belmont, Rockford area, Michigan

Research Triangle Institute International and
Pennsylvania Department of Health

Montgomery County, Pennylvania
Bucks County, Pennsylvania

Rutgers Biomedical and Health Sciences,
School of Public Health

Gloucester County, New Jersey

Silent Spring Institute

Hyannis, Massachusetts
Ayer, Massachusetts

University at Albany, State University of
New York and New York State Department
of Health

Hoosick Falls, New York
Newburgh, New York

University of California, Irvine
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Biomonitoring

Biomonitoring is the measurement of chemicals, metabolites, and/or proteins in bodily fluids or
tissues that can indicate exposure or effect of exposure to environmental contaminants. PFAS
have been measured in whole blood, urine, breastmilk, and hair, however they are primarily
measured in serum or plasma.l’> Some methods use a finger prick to measure PFAS in capilllary

blood.
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PFOA and PFOS have been measured in serum as part of the National Health and Nutrition
Examination Survey (NHANES) since the 1999-2000 cycle. Exposures in the general US
population have steadily decreased since the early 2000s (Figures 1 and 2).1"2 NHANES has also
measured exposures to other PFAS substances over time, however PFOA and PFOS have been
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Figure 1. Percentiles of PFOA serum concentrations for the US population from NHANES survey
years 1999-2018 and HBM-I and HBM-II guidelines for the general population and women of
childbearing age from the German Human Biomonitoring Commission.

monitored the longest.® The International Human Biomonitoring Workgroup (i-HBM) of the
International Society of Exposure Science, maintains an online database of biomonitoring
guidelines from multiple countries (e.g., US, Japan, Germany, Canada) and can be accessed here.
Currently, only the German Human Biomonitoring Commission has risk-based guidance levels
for PFOA and PFOS in plasma, which is assumed to be comparable to serum. They report a
value for which below no adverse effects are expected (HBM-1) and a separate value for which
adverse effects may be possible (HBM-I11).1”® The current HBM-1 values are 2 and 5 ng/mL for
PFOA and PFOS in plasma, respectively.'”* The HBM-I1 values for the general population are
10 and 20 ng/ml for PFOA and PFOS in plasma, respectively.t”® The HBM-II levels for women
of childbearing age are 5 and 10 ng/ml for PFOA and PFOS in plasma, respectively.!’® These are
based on studies that have demonstrated potential for developmental toxicity, reduced fertility,
and increased incidence of gestational diabetes. These are compared to the US general
population levels in Figures 1 and 2. As of 2017-2018 NHANES cycle, it appears that 70% and
55% of the general US population are below the HBM-I for PFOA and PFOS, respectively.'’
The NASEM committee estimated that according to the most recent NHANES report 2 and 1
percent of women of childbearing age (15-49 years) in the US populations may have PFOA and
PFOS levels above the comparable HBM-I1 values.®
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The European Food Safety Authority has a guidance level of 6.9 ng/mL for the sum of PFOA,
PFOS, PFHxXS, and PFNA in serum based upon there efforts to understand a tolerable daily

intake of PFAS.?
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Figure 2. Percentiles of PFOA serum concentrations for the US population from NHANES survey
years 1999-2018 and HBM-I and HBM-II guidelines for the general population and women of
childbearing age from the German Human Biomonitoring Commission.

Currently, NMS labs in Pennsylvania offers PFAS testing, but requies a clinican request, costs
are >$600.° EMPower DX in Massachusetts, a subsidiary of Eurofins Scientific in Luxembourg,
recently began offering direct-to-consumer testing for $399. While they can measure over 40
PFAS from a finger-prick care should be taken comparing results to recommendations for serum

and plasma samples.®

The ATSDR developed the PFAS Exposure Assessment Technical Tools (PEATT) to help local,
tribal, territorial and state health departments conduct PFAS biomonitoring activities, assuming
that drinking water is the primary source of PFAS exposure. The PEATT includes resources such
as statistically-based representative sampling, risk communication materials, questionnaires, US
EPA’s water sampling protocol to help characterize PFAS exposure in communities. If requested
the CDC/ATSDR will provide technical assistance to health departments in developing and

carrying out PFAS exposure assessments.1®
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PFAS Testing and Laboratory Methods

Currently, there are no standard methods for PFAS testing in blood, although many laboratories
follow the CDC protocols used for NHANES. Labs that test for PFAS may also not have clinical
certifications such as Clinical Laboratory Improvement Amendments (CLIA).® Laboratories used
for testing PFAS in blood should have evidence of an extensive quality assurance/quality control
(QA/QC) program, use standard reference materials from the National Institute of Science and
Technology (NIST), and employ laboratory methods with relative standard deviations and limits
of detection comparable to CDC methods.>'"-17® It is necessary for the lab to follow these
methods in order to interpret the results with the biomonitoring and clinical guidelines. Methods
used by a lab that does not follow these methods may provide results that are difficult to
interpret. As relevant PFAS concentrations are very low, great care should be taken to avoid
using equipment or sampling supplies that may contaminante the sample such as those that
contain Teflon.®

Clinical Guidelines

The ATSDR and the NIEHS (National Institute of Environmental Health Sciences) asked the
NASEM for a committee to: “develop principles for biological testing and clinical evaluation,
given substantial scientific uncertainty about the health effects or the value of such measures in
informing care; review the human health literature for the health effects of PFAS; and
characterize human exposure pathways and develop principles for exposure reduction.”® They
also asked the committee to recommend: “options and considerations to guide decision making
for PFAS testing in a patient’s blood or urine; PFAS concentrations that could inform clinical
care of exposed patients, and appropriate patient follow-up and care specific to PFAS-associated
health endpoints for those

patiengts known or suspected to be exposed to PFAS.” Their report was published on July 28,
2022.

The NASEM report provides several recommendations for clinicans advising patients on PFAS
exposure reduction.® Their primary recommendations are to first do an environmental exposure
assessment to determine the potential primary sources of exposure such as occupation (e.g.,
firefighter, military), drinking water, living near certain industries , or consumption of fish and
game from contaminated areas.® If necessary clinicans should consult with occupational health
and safety professionals. Clinicans should advise patients that they can filter their drinking water
if it has elevated levels of PFAS.® Clinicans should stay up to date on any local consumption
advisories for fish, game, dairy and meat from areas with PFAS contamination. Currently, there
does not appear to be any local consumption adivsories for Pima County. However, it is not clear
if fish or game have been tested for PFAS. Special care should be given regarding breastfeeding.
Although PFAS can be present in breastmilk, there are numerous benefits for child development
from breastfeeding. PFAS may also be present in the infant food packaging or water used to
make formula and it is not clear which would provide a greater exposure.®

If clinicians determine that their patient may have elevated levels of PFAS exposure they should

consider offering PFAS testing.® They should provide their patients with an overview of the
potential benefits and harms of testing and subsequent clinical consequences as well as
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limitations of the testing.® Patients that should be prioritized for testing include those who may
have had occupational exposures (e.g., firefighters, military), live in areas with documented
PFAS contamination, or live in areas where PFAS contamination may have occurred such as
near industrial facilities that use fluorochemicals, airports, military bases, wastewater treatment
plants, sewage sludge applications, landfills or incinerators.®

The NASEM recommends that clinicans should use serum or plasma concentrations of the sum
of PFAS to inform clinical care for exposed patients.® The sum of PFAS should include PFOA,
PFOS, MeFOSAA, PFHXS, PFDA, PFUnNDA, and PFNA measured in serum or plasma, care
should be taken with interpretation of capillary blood samples.® They recommend that clinicians
use serum or plasma concentrations and the following guidelines to inform clinical care of
exposed patients®:
e “Adverse health effects related to PFAS exposure are not expected at less than 2
nanograms per milliliter (ng/mL.).
e There is a potential for adverse effects, especially in sensitive populations, between 2 and
20 ng/mL.
e There is an increased risk of adverse effects above 20 ng/mL.”

The NASEM report provides detailed guidance for clinical follow-up for each of these
categories. It is recommended that ATSDR and local governemnt agencies provide local
clinicans and healthcare providers with educational materials about PFAS exposure and PFAS
testing®. The NASEM committee recommended that labs that conduct PFAS testing be required
to report results to public health authorities following local reporting requirements. There is
some limited evidence that phlebotomy may help reduce PFAS levels in blood, but more
research is needed to determine at which level of PFAS do the benefits outweigh the potential
risks.”

Vulnerable Populations and Risk Mitigation
Vulnerable Populations

Most people have been exposed to PFAS due to its environmental persistence and wide-
spread occurrence.*! PFAS can have very long half-lives in human tissue ranging between <1
to 8.5 years.® Numerous studies are currently being conducted to assess and monitor human and
environmental health outcomes following PFAS exposure.** Currently known vulnerable
populations include those living near or working in a PFAS manufacturer, pregnant and
nursing women, fetuses, infants, and immunocompromised individuals.®!"41.6618 pEAS can
cross the placenta and have been tentatively linked to adverse health outcomes, including low
birth weight, in fetuses of pregnant women.*8! Infants are also identified as a vulnerable
population because PFAS can enter breast milk or infant formula may be mixed with PFAS-
contaminated drinking water.8? Infants and young children are also at a higher risk due to
increased intakes of food and water per pound of body weight, exposure pathways through breast
milk, mouthing and ingestion of non-food items and dust as well as increased contact with the
floor, particularly treated carpets.®>® Formula feeding can also lead to PFAS exposure through
contaminated formula or formula mixed with contaminated drinking water.® Most recently,
immunological effects are being identified in PFAS exposure and health effects studies.®®
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Associations have been assessed between PFAS exposure and decreased serum concentrations of
antibodies following vaccinations.!%® For this reason, immunocompromised individuals are now
also listed as a sensitive population for PFAS exposures.'%

PFOA, PFOS, PFHpA, and PFHXS Detection in Public Water Systems in Pima
County and Across Arizona

PFAS presence in drinking water or its sources is a widespread issue that is not limited to a
single county or water provider. Even within Pima County, it is a complex picture built from
reporting information from multiple entities, including Marana Water, the Arizona Department
of Environmental Quality, Davis-Monthan Air Force Base, Tucson Water, Arizona Air National
Guard, and Pima County Regional Wastewater Reclamation Department, and the federal
government.

A recent report included a map of PFAS (PFOA and PFOS) detections in various local water
sources (including but not limited to production wells) and documented 1, 27, and 20 locations in
Metro Water, Tucson Water, and Marana Water districts, respectively.'8 Each location may
have had one or more positive detection events, which further emphasizes that PFAS presence is
not limited to individual water providers and could potentially be present in local private wells.
A map of wells where PFAS has been measured can be found here. For the vast majority of
monitored wells in the Tucson Metro area, PFAS was not detected in any of the samples.
However, the method detection limit is higher the revised 2022 US EPA DWHA. Therefore, all
measured concentrations from water samples are likely to be above the current 2022 DWHA for
PFOA and PFOS. For those wells that have been tested but have never had a sample
concentration reported above the current method detection limit it is possible they may not have
any PFAS contamination especially if they are far from the current known contaminated areas.

Pima County Wastewater released a thorough review of emerging contaminant concerns in the
region. & It included a summary of PFOS and PFOA measurements in December 2016 from
Pima County Water Reclamation Facilities. The report additionally details local media coverage
of PFAS in regional waters and provides a few maps of local water sampling points. It then
covers some available information surrounding DMAFB and Tucson International Airport.
Finally, the report provides a copy of the Arizona Department of Environmental Quality status
report on Emerging Contaminants in Arizona Water from September 2016.1°

In 2016, PFAS was measured above the previous health advisory in seven supply wells for the
Picture Rocks and Airline/Lambert Water Systems served by Marana Water (Table 6).184
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Table 6. Wells and the respective concentration for PFAS that serve Marana Water and are
above the US EPA DWHA.

Well Name Sample Combined PFOA and 2022 Update
Date PFOS concentration (ppt)

Continental Reserve 1 | 12/13/2016 80 Treated at Picture Rocks
Treatment Campus

Continental Reserve 2 | 12/13/2016 92 Treated at Picture Rocks
Treatment Campus

Airline 12/13/2016 102 Off — Line (Not Active)

La Puerta 12/13/2016 90 In “lag position” may

only run during peak
water demand or under
fire flow
Lambert 12/13/2016 90 In “lag position” may
only run during peak
water demand or under
fire flow
Saguaro Bloom 12/13/2016 109 Treated at
Airline/Lambert
Treatment Campus
Falstaff 12/13/2016 87 No longer owned by
Town of Marana,
private owner

The Water Infrastructure Finance Authority awarded a $15 million loan to Marana to build two
new plants designed to remove PFAS from the affected water and, as of May 2019, the draft
preliminary design report is complete.'® In the meantime, Marana Water has mentioned at-home
water treatment systems as a temporary solution including home treatment systems reviewed by
Good Housekeeping and that granular activated carbon has been utilized to reduce PFAS.¥
Previously, these home-treatment systems should have been certified by the National Sanitation
Foundation (NSF) for NSF Protocol P473. This protocol was designed for EPA’s 2016 DWHA
of 70 ppt but was retired in 2019 and the NSF/ANSI 53 and 58 protocols were established by the
NSF. Home treatment systems for PFOA and PFOS should now be certified according to
NSF/ANSI 53: Drinking Water Treatment Units-Health Effects or NSF/ANSI 58: Reverse
Osmosis Drinking Water Treatment Systems protocols.188:189

The Picture Rocks Water Treatment Campus and the Airline/Lambert Water Treatment Campus

reached operational status on March 12, 2021.2% Sampling results of the water being introduced

into the respective systems from both treatment facilities continue to show successful removal of
both of these non-regulated compounds (i.e., PFOS and 1,4-dioxane).%

The Arizona Department of Environmental Quality produced a report that summarized 109
samples from 68 of the 1,500 PWSs in Arizona.'®* Twenty samples had PFAS detected and
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therefore are above the current 2022 DWHA and six (five in Pima County) were above the
previous US EPA DWHA of 70 ppt.

Tucson Water has monitored for PFAS in its system since 2009 as part of its internal Sentry
Water Quality Monitoring Program, a voluntary program to proactively look for unregulated
compounds in its water supplies. Between 2009 and 2016, PFAS were found in wells on the
northwest side near the Santa Cruz River, at levels below EPA’s DWHA at the time which was
600 ppt for combined PFOA and PFOS. When EPA revised this DWHA to 70 ppt in late 2016,
Tucson Water shut off six of these northwest-side wells, and initiated testing of the rest of its
system. At that time, two new wells adjacent to Davis-Monthan Air Force Base were found to
have high levels of PFAS and were shut down. As of June 2022, Tucson Water had shut down 25
groundwater wells due to the presence of PFAS.19

In 2018, Tucson Water noticed a discrepancy in samples of water coming from the Tucson
Airport Remediation Project (TARP), a treatment facility the utility operates to clean
trichloroethylene (TCE) and 1,4-dioxane from a plume of industrial groundwater contamination.
It was discovered that some samples had been taken from a sampling spigot installed to test a
water main that was receiving water from non-TARP sources. Therefore, samples were then
taken from the correct TARP water main and other locations throughout the TARP-served area.
Sampling for PFAS showed concentrations in this service area were < 30 ppt. Upon this
discovery, the utility flushed the system using water from its central distribution system, shut
down TARP wells with the highest PFAS concentrations, and blended TARP plant water with
water from the main distribution system. In addition to these remediation steps, Tucson Water
has replaced the carbon used in the TARP treatment process to specifically remove PFAS (the
plant was not originally designed to remove these contaminants). Following this step, the utility
was able to reduce PFAS in water distributed from TARP to below its operational targets of 18
ppt PFOS+PFOA and 47 ppt for PFHxS +PFHXA.

PFAS was detected in soil, sediment, and groundwater from Davis-Monthan Air Force Base in
concentrations above the US EPA Health Advisory levels.!®® Davis-Monthan Air Force Base
recently released a report summarizing PFOS and PFOA, the Air Forces’ response to emerging
contaminant concerns, and Davis-Monthan-specific information.!®* The report explains that
aqueous film forming foam (AFFF) containing PFOS and PFOA has been used by the Air Force
when fighting petroleum fires since 1970. Based on a 2009 policy established by the Department
of Defense requiring assessment of emerging contaminants, in 2010 the Air Force Civil Engineer
Center (AFCEC) determined that AFFF may have been released at active bases, reserve bases,
Air National Guard bases, closed bases, fire training areas, emergency response areas, aircraft
crash sites, or other release areas. The AFCEC is guided by the Comprehensive Environmental
Response, Compensation and Liability Act (CERCLA) when addressing emerging contaminants.
The Site Inspection of AFFF Release Areas Environmental Programs Worldwide- Davis-
Monthan Air Force Base, Arizona report summarized local efforts to identify PFAS in drinking
water. PFOS and PFOA, individually and in combination, were found above the US EPA
DWHA throughout vertical aquifer samples and PFBS (a PFAS replacement chemical) was
detected below the US EPA Tap Water Regional Screening Level at AFFF Release Area 3.
Combined PFOA and PFOS concentrations in one well reached 14,400 ppt while PFOS
concentrations had a maximum concentration of 13,000 ppt. The Davis-Monthan Air Force Base
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is continuing to work with AFCEC to identify further studies or surveys that may be needed. The
Air Force makes public reports available here.

In 2019, screening of nine wells identified a mobile home park with PFAS concentrations above
70 ppt. Bottled water continues to be delivered to this mobile home park.

Pima County has created a comprehensive report summarizing PFAS in Pima County water here
The Pima County Regional Wastewater Reclamation Department has detected PFAS in
wastewater effluent and local surface water, but all values were below EPA’s DWHA, which
was still 70 ppt when the report was released. In addition, the comprehensive report includes an
October 2021 memorandum from PDEQ), stating that the most recent discovery of PFAS in
groundwater occurred in August 2021 in a well near Houghton Road and Tanque Verde Wash.1%®
The well had PFAS concentrations less than 10 ppt and is one of the 25 that has been shut off.%
This residential area is an unlikely location for PFAS to be discovered. This online tracker
provides PFAS contamination information for national and international sources.'®® Residents
may contact their water utility for more information on how PFAS are being addressed in their
community water supply. Residences and others using private wells are encouraged to test
individual sources for possible contamination. For more information and a list of certified
drinking water laboratories, visit here. In December 2020, ADEQ committed $3.3 million from
the state’s Water Quality Assurance Revolving Fund to stop PFAS from impacting Tucson
drinking water sources.*®’

Federally, during the US EPA’s UCMR 3 collection period of 2013 to 2015 some drinking water
sources in Arizona were found to have PFAS concentrations above the UCMR 3 Minimum
Reporting Levels. While less current, UCMR 3 data further contributes to the context and
knowledge surrounding PFAS in local drinking water sources. UCMR 3 samples were taken at
the entry point to the distribution system.!®® The full UCMR 3 data set is available online here.'%
The data set shows 6,648 samples tested for PFAS from 75 PWSs in Arizona, eight of which
were in Pima County. Forty-seven samples had PFAS results above the Minimum Reporting
Levels in Arizona with 6 samples coming from two Pima County PWSs. Select UCMR 3 data
has been summarized below in Table 7 which shows average PFAS concentration results above
Minimum Reporting Levels in Arizona PWSs and in Table 8 which shows the six samples above
Minimum Reporting Levels in Pima County. PFAS were not included in UCMR Cycle 4. UCMR
Cycle 5 will begin in 2023 and will include 29 PFAS, including: 11CI-PF30UdS, 9CI-PF30ONS,
ADONA, HFPO DA, NFDHA, PFBA, PFBS, 8:2FTS, PFDA, PFDoA, PFEESA, PFHpS,
PFHpA, 4:2FTS, PFHXS, PFHXA, PFMPA, PEMBA, PENA, 6:2FTS, PFOS, PFOA, PFPeA,
PFPeS, PFUNA, NEtFOSAA, NMeFOSAA, PFTA, and PFTrDA.%®
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Table 7. Summary of PFAS detections above Minimum Reporting Levels in Arizona during

UCMR 3
Average Reported PFAS Chemical Result
(ppt)*2
PWS Name PFOA | PFOS PFHpA PFHXS
Oatman Water Company 31 265 145 710
City of Tempe 37 78.6 12 62.5
Liberty Water LPSCO 50 205 30 67.5
Town of Payson 38 * * *
City of Tucson * 56 * 340
Metropolitan DWID * 52 * *

Table 8. Summary of PFAS detections above Minimum Reporting Levels in Pima County during

UCMR 3
PWS Name PFAS Chemical* Sample Date PFAS Chemical
Concentration (ppt)
Metropolitan DWID? PFOS 08/20/2014 51
Metropolitan DWID? PFOS 03/23/2015 53
City of Tucson® PFOS 04/16/2013 56
City of Tucson® PFOS 11/20/2013 56
City of Tucson® PFHXS 11/20/2013 260
City of Tucson® PFHXS 04/16/2013 420

- Minimum Reporting Levels for PFOS and PFHXS are 0.04 pg/L and 0.03 pg/L, respectively.

2: Metropolitan DWID PWS is associated with zip code 85704 based on data available through the US EPA regarding
zip codes served by PWSs.

3: City of Tucson PWS is associated with zip codes 85629, 85641, 85658, 85701, 85704, 85705, 85706, 85707, 85708,
85709, 85710, 85711, 85712, 85713, 85714, 85715, 85716, 85718, 85719, 85726, 85730, 85735, 85736, 85737,
85739, 85741, 85742, 85743, 85745, 85746, 85747, 85748, 85749, 85750, 85756, and 85757 based on data available
through the US EPA regarding zip codes served by PWSs.

On June 8, 2021, Tucson Water announced that out of an abundance of caution and due to rising
levels of newer contaminants in the area groundwater (like PFAS), also emanating from the
airport area), it would suspend TARP operations on June 21, 2021 as it seeks alternative end-
uses for the treated water.?%° These alternatives include discharge to the Santa Cruz River and/or
Tucson Water’s reclaimed water system, which is used for landscape irrigation.?%° Similar to
drinking water which is regulated through the Safe Drinking Water Act, these alternatives will
need to be assessed for potential regulatory implications under the Clean Water Act. While
currently PFAS is not regulated yet under the Clean Water Act, US EPA is working towards
establishing water quality criteria, updated analytical methods and a new rule under the Clean
Water Act.?%

On June 21, 2021 Governor Doug Ducey and the Arizona Department of Environmental Quality
(ADEQ) announced that $2 million in state funding would be used to help Tucson Water restart
the treatment plant and construct a State-funded temporary pipeline and permanent outfall
structure to convey treated water to the Santa Cruz River north of Irvington Road.?%? This
announcement marked the second time that the state deployed fund to address PFAS in Tucson’s
groundwater supply. In November 2021, the TARP began operating to remove PFAS from
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groundwater and discharge the treated water into the Santa Cruz River.222% |n addition, the
Central Tucson PFAS Project began operating in January 2022 to remove PFAS from
groundwater.?%? Tucson Water is also constructing the TARP Recycled System Source Water
Infrastructure Project, which will discharge treated TARP/AOP water into the Tucson Water
Recycled Water System.?%® This is expected to be complete in May 2023.8

Tucson Water conducted sampling for PFAS in its distribution system in 2018 and modified its
internal operational target to 18 ppt as a voluntary, proactive operational strategy to protect
public health. As a result, it has removed 25 groundwater production wells from service where
PFOA and PFOS have been found. Since the new EPA health advisory was announced in June
2022, the City of Tucson Water Department has adopted the internal operating target level of non
—detect (less than 2 ppt) for PFOA, non-detect (less than 2ppt) for PFOS, 7 ppt for PFHXS, 7 ppt
for PFHpA, 420 ppt for PFBS, 200,000 ppt for PFHxA, and 10 ppt for GenX.% Tucson Water
has created a set of frequently asked questions regarding PFAS presence in local water sources
here.?% The City of Tucson maintains a website summarizing wells that have been tested for
PFAS and efforts being made to inform the public here.

On February 5, 2020 Regional Wastewater Reclamation Department (RWRD) provided sample
data to the Pima County Board of Supervisors for PFOA and PFOS influent and effluent (Table
9).2% Due to the consistently low levels of PFOA and PFAS at the Water Reclamation Facilities
(WRF), there was no further analyses.?%

Table 9. Water Reclamation Facility PFOS and PFOA Sample Data

Water Location Sample Date | PFOS ng/L PFOA ng/L Total ng/L
Reclamation
Facility
Agua Nueva Influent 12/8/16 7.5 4.6 12.1
Effluent 12/8/16 6.6 8 14.6
Effluent 12/29/16 9.9 11 20.9
Effluent 6/21/17 5.4 7.7 13.1
Influent 8/29/18 19 3.9 22.9
Effluent 8/29/18 5.1 6.6 11.7
Avra Valley Effluent 12/29/16 1.6 9.2 10.8
Influent 8/29/18 4.8 1.9 6.7
Effluent 8/29/18 2.5 8.8 11.3
Corona de Effluent 12/29/16 ND 18 18
Tucson Influent 8/29/18 ND ND ND
Effluent 8/29/18 ND 14 14
Green Valley Effluent 12/29/16 2.8 26 28.8
Influent 8/29/18 ND 4 4
Effluent 8/29/18 4.5 28 325
Tres Rios Effluent 12/29/16 8.6 9 17.6
Influent 8/29/18 5.5 5.1 10.6
Effluent 8/29/18 4.2 6.1 10.3
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In June 2017, the ADEQ contracted with Hargis + Associates to conduct water sampling and
analysis for the presence of PFAS in surface water at various locations along the Santa Cruz
River and in groundwater samples from various monitor and irrigation wells. Results showed
that PFOS and PFOA were detected in all eleven ADEQ surface water samples from the Santa
Cruz River with concentrations less than 30 ng/L except for location SC-07 approximated seven
miles downstream of the Tres Rios WRF which had a concentration of 47 ng/L. In addition,
PFOS and PFOA were detected in all four ADEQ groundwater samples along the Santa Cruz in
concentrations ranging from 17 to 60 ng/L.

RWRD has also taken measures as it relates to PFAS and land application of biosolids. Biosolids
are no longer applied to agricultural land and is instead disposed in landfills as of December 31,
2019. RWRD is also working with the University of Arizona National Science Foundation Water
and Environmental Technology Center on a project that aims to assess the human and ecological
health risks related to land application of municipal biosolids containing PFAS.

In Spring of 2022, well screening for PFOA and PFOS was conducted at Marana School District
and Tucson Medical Center (TMC). TMC had no detectable levels and levels at Marana School
District were below the previous EPA DWHA of 70 ppt.2%

In June 2022, PDEQ provided the operational data from four PFAS removal plants in Pima

County (Table 10).2%

Table 10. Pima County PFAS Removal Plant Operational Data

Reclamation Plants Average Average PFOA+PFOS | Volume of water
PFOA+PFOS Effluent treated (MG)
Influent (ppt)
(ppt)
Airline/Lambert Water 76.1 <1.70 11
Treatment Campus
Central Tucson PFAS 1,785 <1.80 194
Project (CTPP)
Picture Rocks Water 49.4 <1.70 31
Treatment Campus
Tucson Airport Area 38.7 <2.0 270.7
Remediation Project
(TARP)
Summary - <1.7t0<2.0 332.1

In 2021, the University of Arizona has received a $1.3 million grant from Department of Defense
to study how PFAS behaves underground and moves from the soil to the groundwater.?’” They
have found that at defense sites, PFAS can be present at very high concentrations in the soil,
much higher than the groundwater, and thus, there is a reservoir that can have long-term
potential for contaminating the groundwater.2°’On April 5, 2022 the Arizona Board of Regents
awarded $1.5 million to team members from the University of Arizona, Northern Arizona, and
Arizona State University to address cost effective technology to remediate PFAS in water and a
cost-effective way to replace AFFF.2% The University of Arizona and Northern Arizona
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University researchers that received 1.5 million from the Arizona Board of Regents are working
to develop specialized, reusable sponges to remove PFAS from drinking water.2%

Risk Mitigation

While this report emphasized ingestion exposure to PFAS via drinking water, it is important to
note that PFAS occurs from other pathways as well. ATSDR makes the following
recommendations to reduce overall PFAS exposure: 1) if drinking water is contaminated, use
alternative sources for all activities where water may be swallowed such as a certified home
treatment system, 2) avoid eating contaminated fish per local health advisories, and 3) avoid
using household products containing PFAS (contact Consumer Product Safety Commission at
(800) 638-2772 for more information).”? Currently, there are not any health advisories regarding
consumption of fish with respect to PFAS in Arizona. However, it does not appear that fish have
been tested for PFAS in Arizona.

The Environmental Working Group has been providing the public with recommendations on
how to reduce PFAS exposure for almost 20 years. They recommend that individuals can reduce
their exposures to by avoiding fabrics treated with water-resistant treatments like Polartec, and
Gore-tex, using stainless steel and cast iron cookware instead of non-stick cookware like Teflon,
skipping optional stain-repellant treatment on new carpets and furniture like Scotchguard,
avoiding personal care products with PTFE or “fluoro” ingredients, and eating less fast food and
microwave popcorn as the wrappers and bags are often coated in PFAS.2%0

Studies have seen that PFAS concentration in dust was positively correlated with carpeting in the
home.?!! Further studies have found that PFAS found in household dust were significantly
related to floor type, number of occupants of the home, and age of the home.?'? These studies
begin to explain potential sources of PFAS in household dust however more research is needed
to clearly define steps to reduce PFAS exposure via dust.

Consuming PFAS-containing drinking water through direct water ingestion or cooking are
established routes of exposure to PFAS.%%213 Although PFAS are persistent in the environment,
precautions can be taken on an individual level to decrease exposure through drinking water.
Options include use of drinking water treatment and alternative drinking water sources. Various
systems, ranging from point-of-use filters to point-of-entry reverse osmosis water treatment
strategies are effective in reducing PFAS from drinking water. A first step in selecting risk
mitigation strategies is to determine the existing level of PFAS contamination using available
analytical methods. Since current analytical methods cannot measure down to the new DWHAS
for PFOA and PFOS, risk mitigation should be considered if PFOA or PFOS are detected in the
drinking water.®

The NASEM report includes information from behavioral intervention studies focused on
reducing PFAS exposure.® The studies demonstrate the effectiveness of water filtration at
reducing levels of certain PFAS. The authors from the report mention that consumers have a
variety of options to reduce PFAS exposure, such as whole-house, under-sink, and filtering-
pitcher devices.® Funded by NIEHS, the PFAS- REACH (Research, Education, and Action for
Community Health) project develops guidance materials and data interpretation tools for
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communities to use if they have been impacted by PFAS-contaminated water.® PFAS-REACH
provide “in your personal life recommendations,” such as filtering your drinking water with an
activated carbon or RO filtration system, and “in your community recommendations,” such as
urging your local water utility to test for PFAS.®

Drinking tap water is often a good option because it is held highly accountable by
regulatory agencies and routinely monitored. Municipalities aim to be proactive in addressing
water quality concerns when serving the public. Based on size, they may be mandated to monitor
for PFAS even though it is an unregulated chemical substance and smaller water systems may
elect to monitor for PFAS even if it is not mandated. Municipalities are a part of a collective,
nationwide knowledge base regarding emerging contaminants and treatment options to deal with
them.

Alternative sources, such as bottled water, are often either not monitored for PFAS or
extremely limited in the information they provide about emerging contaminants, so the
potential for exposure is unknown. If a municipal water source is serving water above health
advisory limits, implementing a mitigation technique such as a home treatment system or
filtering at the point-of-use (POU) may be recommended to reduce PFAS exposure. However, it
is important to note that some treatment technologies, such as high-pressure membrane
technologies like nanofiltration and RO, may produce waste streams or filters with concentrated
levels of PFAS that require proper disposal.'818° Before implementing treatment technologies, it
is advised to understand and follow the recommended use guidelines to prevent increased PFAS
concentrations (e.g., some treatment processes have been shown to increase PFOS
concentrations, likely through precursor oxidation), and other unintended effects.®

Residential Water and Private Wells

Municipal water systems may be tested for perfluorinated compounds and municipalities
regularly publish water quality reports. However, if a private well is the home drinking water
source, the US EPA recommends sending water samples to certified laboratories.?'* For
more information and a list of certified drinking water laboratories, visit:
https://www.epa.gov/dwlabcert. To find a list of the Arizona Certified Commercial Drinking
Water Laboratories, visit https://ells-lab
search.azdhs.gov/DrinkingWaterTestingLabs/drinkingwatersearchcontentpage. US EPA also
provides additional information on how to protect and maintain your well for contaminants of
concern here: www.epa.gov/safewater

It is suggested to periodically monitor private residential drinking water wells. If the residential
drinking water sample results from a US EPA certified drinking water laboratory have detectable
PFOA and PFOS levels, additional sampling is recommended.*® If additional sampling results
confirm that residential drinking water contains PFOA and PFOS concentrations, treatment
measures are recommended.® The Arizona Department of Health Services maintains detailed
information for private well owners regarding regulations, testing information, and who to reach
out to with any questions.?*® The Arizona Department of Health Services and the US EPA can
provide relevant information and recommendations for remediation strategies for those using
private wells for residential water supplies. PFOS and PFOA levels have been measured in
private wells in southern Arizona during dry and wet seasons.?!® The combined concentration for
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PFOS and PFOA exceeded the previous DWHA level in three samples during the wet seasons
(maximum concentration reported was 1.38e-5 mg/L), and all measured concentrations for PFOS
and PFOA exceeded the current DWHASs (maximum concentrations were 3.47e-5 mg/L for
PFOS and 8.66e-5 mg/L for PFAS).¢

Mitigation Choices and Options

Boiling water may concentrate the PFAS in water 188189217

Mitigation measures can always be taken if there is any concern about drinking water safety due
to the presence of PFAS. One solution is to substitute personal drinking water in the home. If
utilizing substitution options, this water should also be used for food-preparation purposes.
Bottled water producers are required to produce water under sanitary conditions, protect water
sources from contaminants, use quality control processes, and sample and test source water and
final product for contaminants.?*® If using bottled water, it is important to ensure its safety by
taking precautions such as using bottled water relatively quickly after opening and storing
bottled water in a cool place.?!® Please note that bottled water is not regulated for PFAS,
there is very limited data regarding PFAS levels in bottled water and therefore it is
unknown if it is a good substitution. Bottled water should only be used as a substitute when
there is known PFAS contamination of the original water source and other mitigation approaches
are not available. Authors from the NASEM report state that using bottled water as a
replacement for tap water can be expensive and inconvenient, thus understanding local water
conditions in comparison with PFAS levels in specific types of water bottled is needed to be
confident of reduced PFAS exposure from drinking water.’

Appendix E from the NASEM report provides an overview of studies on personal behavior
modifications that may reduce PFAS exposure.® They primarily focus on two types of drinking
water interventions: 1) whether the use of purchased water bottle results in lower PFAS exposure
compared to the use of tap water, and 2) whether-and the extent to which water filters at point of
entry (POE) into the home, point of use (POU), or in water pitchers reduce PFAS exposure.®

Bottled Water

Just a few studies have measured PFAS in bottled water. In one study, median concentrations in
tap water, filtered water, and bottled water were 4.44 ng/L, 3.13 ng/L, and 2.36 ng/L,
respectively and there was no significant difference between them.??° A different study found
higher PFAS tap water (41.3 ng/L) compared to bottled water (0.48 ng/L).?? In a survey of 101
non-carbonated, non-nutritional and unflavored bottled water products from 19 retail food and
beverage chains, PFAS was detected in 55.6%, 40%, 11.4% and 66.6% of the samples from
spring water, alkaline water, purified water and distilled water, respectively.??! The median
measured concentration of the sum of 32 PFAS in these bottled water samples was 0.98 ng/L
with a range of 0.17 ng/L to 18.87 ng/L.??* Collectively, this indicates that bottled water should
be considered for substitution of tap water to reduce PFAS exposure, only in areas where tap
water is documented to regularly be above these concentrations.

Filtration mitigation
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Residential water treatment options exist for individuals with water quality issues or concerns.
222225 At-home treatment typically occurs at the “point-of-use” (meaning that water treatment
happens wherever you are directly using the water such as attached to the faucet or in a pitcher
before you drink the water) or “point-of-entry” (meaning water treatment occurs as water enters
the property and therefore all water outlets in the home are putting out treated water). Water
treatment system type, treatment system location, homeownership or renting status, water usage
amount, and cost are all factors to consider when selecting a residential water treatment system.
Treatment methods have been identified as successful in removing some PFAS compounds,
including PFOA and PFOS. These methods include Granular Activated Carbon (GAC),
Powdered Activated Carbon, ion exchange resins, reverse osmosis (RO), and nanofiltration,?2°226
GAC and RO are likely the most feasible options for residential water treatment. Proper
maintenance of the residential treatment system is critical to reducing contaminant breakthrough
or concentration, and other unintended effects such as metal corrosion.??” Metal corrosion can
occur due to changes in the water pH or alkalinity levels, like what happened with lead in Flint,
Michigan. Detailed information regarding treatment technologies and considerations is available
for each PFAS (i.e., PFOA, PFOS, PFBS, and GenX) in their respective Health Advisory
documents, 0188189

To assist in making informed choices for PFAS drinking water removal systems, several third
party, non-government organizations have developed accreditation standards and protocols for
water processing materials. The American National Standards Institute (ANSI) and the
National Sanitation Foundation (NSF) are the two leaders in testing products and setting
treatment standards for aesthetics, health effects, emerging compounds, incidental
contaminants, microbial contaminants, chemicals metals, and PFOA/PFQOS.22822 The
NSF/ANSI 53 (sorption) and 58 (RO) are the standards for PFOA and PFOS reduction in
drinking water. The NSF completes rigorous product testing to determine if a system complies
with the NSF/ANSI 53 and 58 standards. To comply with the standards, the device must reduce
PFOA and PFOS concentrations in water below the previous DWHA of 70 ppt and comply with
NSF/ANSI 53: Drinking Water Treatment Units- Health Effects or NSF/ANSI 58: Reverse
Osmosis Drinking Water Treatment Systems.?*° Some home treatment systems are certified to
remove PFAS from drinking water.?22-2?% The point-of-use devices are most commonly Granular
Activated Carbon (GAC) or Reverse Osmosis (RO). Before purchasing a point-of-use device,
confirm that the product is NSF/ANSI Certified for Protocol 53 or 58. A complete list of the
Drinking Water Treatment Units certified under NSF/ANSI 53 can be found here. The NSF
advises people that wish to implement a home water treatment to find out what is in their water,
decide what contaminants they want to reduce, and compare options for water treatment.?3! For
links to NSF certified point-of-use filters and whole-house filters, visit:
https://www.nsf.org/consumer-resources/articles/home-water-treatment. Before purchasing a
water treatment system for PFAS removal that is NSF certified, make sure to check packaging or
NSF’s website for the standard (such as NSF/ANSI 53 or 58), and for a claim such as PFAS
reduction.?. Examples of refrigerator filters that are NSF/ANSI 53 certified and that remove
PFOA and PFOS include the LG Electronics ADQ747937 filter, the A.O Smith AO-US-100-R
filter, and Samsung Electronics RWP70010TWW filter.®? At this time, it is uncommon for stock
refrigerator filters to remove PFAS. Additional information is available through Good
Housekeeping.??* Another resource for PFAS information was published by the University of
Arizona Cooperative Extension and is available here.?3
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Costs for treatment technologies intended for PFAS removal will vary based on the type of
PFAS that consumers wish to reduce, size of the system (single household vs. community), and
other factors. On April 18, 2022, Cyclopure released Purefast filters. The home filter is
compatible with Brita pitchers and is priced at $45 with a capacity of 65 gallons.?** The company
has validated the removal of 11 PFAS compounds including PFOS, PFOA, GenX and PFNA to
non-detect throughout the duration of the 65-gallon filter cycle.?3* Examples of NSF certified
filtration systems include Hydroviv Under Sink Water Filter, A.O. Smith AO-CMW Clean
Water Machine Pitcher-Filter, AOW-3000 Under Sink Reverse Osmosis Water Filter System,
which range in cost from $140-400. Detailed treatment technologies specific for PFOA, PFOS,
GenX and PFBS are available in their respective health advisory documents.?*®

NSF certifies treatment technologies under laboratory conditions. A few studies have been
conducted have tested POU and POE technologies in real-world conditions. In one study, RO
and dual-stage filters removed most measured PFAS compounds at an average of >90%
efficiency. Activated carbon POU filters (including countertop, faucet, pitcher, fridge, and single
stage under-sink filters) had greater variability and 73% of the filters still showed significant
removal.® Other studies have demonstrated that AC pitcher-type water filters and faucet-mounted
filters were able to reduce PFAS to below the detectable range.® However, the effectiveness
decreased with filter age. Additional studies have been conducted by US EPA, that demonstrate
that homeowner installed RO and GAC systems are effective at removing PFAS, however
differing water qualities may change the effectiveness in PFAS reduction of these treatment
systems.?® Based on these and other studies cited in the NASEM report, the authors concluded
that household water purifiers are effective at reducing PFAS levels in drinking water, and that
pitcher-type, POE, and POU filtration systems can reduce PFAS exposure, but that optimal
filtration depends on users maintaining the devices and replacing filters according to
manufacture directions.®
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Appendix 1. Further detail regarding negative human health outcomes association with each
PFAS type discussed including references used in creation of Table 4 in the report.

*The reference numbers presented in Appendix 1 coincide with the reference numbers in

Appendix 2. The appendices references do not correspond to the reference numbers in the main
report.

PFAS Type
Long-Chain Short-Chain
PFOA PFOS | PFHxS PFNA | PFDeA |PFUA | PFDoA | PFOSA | PFHpA | PFBS PFBA | PFHxA
Cardiovascular disease +(1,7,59) +(101) +(101) +(101) +(101)
Stroke; Carotid intima media thickness +(1,8) +(3,233) +((2131§’)) +(233) +(115) -(233)
Angina; e inTarciy anerialisease] +(100, 201, +(100, 101) +(100)
systolic blood pressure; diastolic blood pressure; +(1,6,7, 100, o | +(201) f +(100, 233) +(100,101) | +(201) y +(100)
hypertension risk 201, 235) 233) ~(233) (233)
Cerebrovascular disease; microvascular disease +(4,59) +(204)
Pregnancy induced hypertension +(2) +(201) +(201)
. » +(114) +(201)
Cardiovascular iR ER “i50) +(10) 54 -(154) - +(219)
Coronary artery disease; Coronary heart disease +(101) +(101) +(5) +(219)
Congestive heart failure +(101)
Arterial Wall Stiffness +(102) +(102)
Gastrointestinal Cholelithiasis or acute cholecystitis +(11)
Osteoarthritis risk + (12, 14) -(12)
Bone mineral density - (13, 218) = (123]181)17. - (13, 218) - (218)
Musculoskeletal Osteoporosis risk +(13) +(13) +(13)
Serum calcium (+222) +(222) | +(222) +(222) +(222)
+ (15, 200,
TSH +(18, 122,163, | 221, 230) +(221)
231) (16,27, *+(164) - (27, 231) -(@27) - (27, 221)
107, - (27, 221)
-(164) 108)
+(18, 24, 109,
T3; FT3; T3 uptake 118, 122) +(21)- +(109, 221) (15
Jdr 2o | as1ey | Y2 | Ve -5 | 3 -(2)
231)
T4; T4 binding globulin; Free T4 +(16, 18, + (105, 107,
+ (172‘2118)' 118, 2) +(§205;) 108, 109, -2, - (23,27,
- Sl 221
~(107, 108, 250) “f@llm‘ 250) ) (2_3)1 252) 221)
Thyroid disease; thyroid peroxidase antibody; +(1, 19, 20) +(221)
thyroglobulin -(221)
Endocrine Taking thyroid medication +(20)
Hypothyroidism including subclinical +(19, 25,106) | + (25, 106) | +(25)
Subclinical hyperthyroidism - (25) +(25)
Functional thyroid disease +(26)
Germ cell tumor +(234)
Adrenal steroid metabolites -(224)
Fetal sex hormone -(245) -(245)
Infectious Diseases (Total, risk of italizati +(131) —(131) | +(111,131)| +(111)
IgE +(28) —(125) +(28) +(28,36) | +(28,36) +(28)
Absolute eosinophil counts; Eosinophil cationic protein +(28) +(28) | +(28) +(28) +(28) +(28) +28)
Tetanus antibody levels - (29) - (35) -(33) -(33)
Diptheria antibody levels - (29, 30, 35) - (33) - (33) -(30,33) | -(33) -(33)
Lower Respiratory Infections, Common cold (# of +(31, 110, 196, | + (110, 220, +(31, 110, + (110,
episodes), rhi junctivitis, chicken pox, i 220, 229) 229) +(220) 220) 220) +(196) +(110) +(229)
bronchitis, ear infection -(220) -(220) ~(220) -(220)
COVID severity; COVID risk +(225,246) | +(246) +(215)
Urinary tract infection -(220) -(220) -(220)
Rubella antibody levels . _ - (31, ~
(31, 130) (31, 130) 130) (31)
Mumps antibody levels -(130) -(130)
TR itis (# of episodes); Diarr ic flu + (31, 220) +2;?61;-, +(220) (g)ﬁ
Seroprotection from influenza A H3N2 virus - (34)
IL-4 or IL-5 T-helper cytokine +(36) +(36) + (36, 90)
Allergies, Eczema, rhinitis, sensitization, dermatitis +(124, 126, 130,
206,188)  [+(131), -(131 } +(206)
(196, 196) +(206) +(126) +(206) (196, 220) ~(196)
171)
MHC I, PF4 (+260) +(260)
Ulcerative Colitis +(61, 128, 261)
Rheumatoid Arthritis; RA markers or factors +(61, 205)
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PFAS Type

Long-Chain Short-Chain
PFOA PFOS | PFHxS PENA | PFDeA |PFUA | PFDoA | PFOSA | PFHpA | PFBS PFBA | PFHxA
Fecundability +(148) ~ +(149) . (151
.(37.38) (37) - (38) (148) (151)
Infertility +(37,38,39) | +(37,39) +( gg; r((ll‘;%)) -(150) +(150)
Premature ovarian insufficiency +(198) +(198) +(198)
Prolactin + (40)
FSH +(41) - (42) -(42)
LH + (41, 135)
Testosterone +(82,116,135 | (58 a3 | -3 -135) -135)
SHGB +(42)
Estradiol + (82, 116, 136) | - (43, 45) +(135) + (44)
P450 Aromatase +(116)
Reduced breastfeeding duration, breastfeeding cessation | + (131, 144, 146)| +(131, 146) +(146, 254) | +(146, 254)
Reproductive Anogenital distance ] -2s8) | 64 | -(264)
Androgen Index -(44)
PCOS 147) +(147)
Early puberty; Early Menopause +(45,145,210) | *R210-| 145,219 | 5,219 | wo12
Later puberty +(213)
Hysterectomy +(145) +(145) (+145) +(145)
Altered sperm murpholugsypg{woullly: percent abnormal T((%g_gl) +(137, 138) +(138) +(137) +(137)
y-X chromosome ratio +(139)
IVF outcomes (embryo quality, 2 PN zygote) -(239)
Endometriosis +(140, 142) +(140) +(140)
Menstrual irregularity +(143)
Pre-term birth; small for gestational age; low birth weight +(10, 46,
HUS 1) | 95,08y | -(156) +176) | +(176)
-(152)
-(152)
Gestational age; birth weight; head circumference, birth +(112)
length, abdominal circumference, adiposity at birth, +177) - (10, 46,
umbilical circumference -(112,113,153, | 112,113, |+(161,166)—| +(223) +(223) +207) +(203)
157, 161, 162, 165,( 156, 158, |(168, 175, 202, -(155, 168, -(176)  [+(161, 176)| (112, 176) (178) -(112) +(207) -(214)
166, 167, 168, 169,| 166, 169, | 203, 216) 176) 203 g
203, 258) 174, 202,
216)
Pregnancy and Childhood BMI (141, 227) | -(141, 227)| +(227) +(227) +(227) +(227) +(227)
Birth Outcomes Childhood growth trajectories -(227) -(227) -(227) -(227) -(227) -(227) (-227)
Ponderal Index -(159, 167,
~(159, 169) 169, 170,
171)
Cord total adiponectin +(167)
Gestational weight gain; Maternal weight gain; upper +(160, 214,
arm ci skinfold thickness +(160,241,253) | 541 953) HE)
Congenital cerebral palsy +(173)
Cord DNA methylation +(244, 260) +(244) +(244) +(244, 260)
Miscarriage before gestation week 12 +(47) +(47)
Mental indices, 6-month old female inf: - (48)
Full-scale IQ +(49)
Scores on tests of ADHD (improvement) +(49)
Executive function scores (mother completed survey) +(50)
Executive function scores (teacher completed survey) - (50)
+ (53,
ADHD 7((51)) 63 | +63 +(217) +217)
Hypotonic +(52)
Scores on tests evaluating externalizing behavior - (54)
Abnormal behavior and hyperactivity +(55)
Developmental | pelayinage of sitting and earlier use of word-like sounds +(56)
Performance on task requiring behavioral inhibition - (57) - (57) - (57) - (57) -(57)
Negative impact on personal social skills -(247) -(247) -(247) -(247) -(247) -(247)
Autism spectrum disorder +(248) +(257) +(257) +(248)
Learning problems +(51)
Glucose tolerance +(58) _
&y -(249, 182) 8) 8
Fasting blood glucose; Fasting insulin; maternal +(58, 184,
glucose levels +(184, 188) 185,191, | +(188,192, | +(188,191,
(58,103 | 188,269) 269) 192) +184) | -(58)
-(103)
Diabetes; gestational diabetes +(1, 187, 189, 190,
Y 204, 251) +(58,189) | 1g3) Ay - (58) +(129) +(251) +(129)
. -(183) -(183) - (58, 183)
Diabetes/ Diabetes deaths +(59,62,179,
Metabolic 180, 181, 182)
Central adiposity, risk of obesity +(237) +(237)
Glycated hemoglobin (HbA1C) +(103) +(58)
B cell function; HOMA- B; HOMA-IP + +(184, 191,
(103, 184, 185) +(192) y
e 188) “193) +(192) (186)
-(186)
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PFAS Type

Long-Chain Short-Chain
PFOA PFOS | PFHxS PENA | PFDeA |PFUA | PFDoA | PFOSA | PFHpA | PFBS PFBA | PFHxA
Prostate cancer; prostate cancer deaths +(59, 65, 181, +(65) +(65) +(65) +(65)
194)
Colorectal cancer - (60) - (60)
Bladder cancer - (61) +(66)
Kidney cancer deaths; renal cell carcinoma +(62, 64, 182,
256)
Cancer Testicular cancer +(63)
Breast cancer +(67, 195, + (68
+(63, 195, 240) 240, 188) 1;8)‘ +(195) +(195) +(195) +(67, 68)
-(209)
+(69, 75
HDL +(84, 118, 243) - " 107" S +(76,84, | + (84,
@7 e )[+(84,104) (64209 | 105 543 | 102)
LDL +(74-77,79, + (74,75, | +(73, + (76, 102, +(102) +(105)
82, 85,90, 102) | 80, 90, 102)| 102) 243)
TC/HDL-C ratio - (69)
Total cholesterol ;5(;3 ;g Zj * [218‘074'75 +(73, +(76, 90,
83,85, 90, 102, | g3, g5, 00, | 84 102, 102,232, | +(76,102) | T304 +(90)
120, 232) '102‘) ' 232) 243)
Elevated cholesterol + (77, 88) +(77)
Non-HDL cholesterol +(120, 121)
Elevated LDL +(77)
Trigl ides, free fatty acids, trig| ides with + (85, 86, 90,
saturated fatty acids 102,104,118, | * (22615)86' +(104,265) | * (92%5}04' -(212) (212)
264) -(212)
212) (212, 243) -(212)
NASH, NAFLD, Liver fibrosis +(226) +(226)
Hepatic Py
R (81, 118)
Bilirubin (72)
GGT +(78,82,89, | +(21,89, +(222,255) | +(222)
118, 222) 222)
AST +(81, 87, 89)
21, 89,
-(119) e
ALT +(71,78,89,91, + (21,89, +(255)
255) 91, 255)
ALP +(255) +(255) +(255)
Lipid metabolism biomarkers +(222) +(222) +(222) +(222) +(222)
a2 globulins +(70)
Serum uric acid
+(70,92-95, | +(93, 94 N
o 95 +(93)
o7) o7) (95) (93)
Renal
Hyperuricemia risk +(92,93, 95,
yp o7 98) +(92,97)
SGFRIGFR - (94,96, 99) '(9;‘6)96‘ -(99,200) | -(99,200) | - (200) +(200)
Kidney disease +(1,96) +(96)
Chronic kidney disease deaths +(62)
Chronic Bronchitis +(1)
Asthma diagnosis; asthma severity +(1,28,36,61, | +(28,32 | +(28, 36, +(28, 36, 28, 36
127) 3,107 | 1on) | 127.199) | *(28:39) G @83
Respiratory Lung Function -(228)
Cardiorespiratory fitness -(259)
Shortness of Breath, wheezing +(1) -(132)
Memory loss -(133) -(133) -(133) -(133)
Neurologlcal Memory and Learning scores, executive function, visual +(134) +(134)
and spaial function scores (134)
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Adults;

CA=child Associati
Ref# | Health Category Date Authors Title Journal Study design Location d;elsc;:r‘/a Population Health Category Outcome measured PFAS Type sst():la)lon
Both
Renal Kidney disease (self-reported) PFOA +
Respiratory Chronic bronchitis PFOA +
Endocrine Thyroid problems (self-reported) PFOA +
Cross-sectional US; near a Teflon
Renal; Respiratory; Anderson- comparison | manufacturing plant Respiratory Asthma PFOA +
Endocrine; Mahi s tudy of self- located along th N=566 residents and Respiraton Shortness of breath on stairs PFOA +
1 n. ocrine; 2008 ELEIE Self-reported health effects among community residents exposed to perfluorooctanoate. New Solutions study of se O?a e? 2 .ong © Adults res! .en s an 2 E = S
Cardiovascular; Kotlerman, J., reported health | Ohio River in Wood occupational Cardi | Cardiovascular disease (self- PFOA "
Diabetes Takhar, H., et al. history and County, West arclovascuiar reported)
symptoms Virginia. Cardiovascular  [Angina (self-reported) PFOA +
Cardiovascular  [Myocardial infarction PFOA +
Cardiovascular  [Stroke PFOA +
Diabetes Self Reported diabetes PFOA +
Envi tal
Darrow, L. A nw:)er:lr::n @ Cardiovascular  [Pregnancy-induced hypertension PFOA +
Y Serum Perfluorooctanoic Acid and Perfluorooctane Sulfonate Concentrations in Relation to ) . . . N=1,330; C8 Health
2 Cardiovascular 2013 Stein, C. R., & ) ) 5 Perspectives, Cross-sectional | US; mid-Ohio valley Adults
Birth Outcomes in the Mid-Ohio Valley, 2005-2010 project
Steenland, K. 121(10), Birth Outcome  |Birth weight PFOS -
1207-1213.
Ints i |
Lin, .., Lin, L~ Association between levels of serum perfluorooctane sulfate and carotid artery intima-media nJ:L:?:alloonfa N=644; general
3 Cardiovascular 2013 |Y., Wen, T-W., et . . P v . Cross-sectional Taiwan Both ages 12- G Carotid intima media thickness PFOS +
al thickness in adolescents and young adults Cardiology, 168, 30
) 3309-3316.
Lundin, J. I.
r Epidemiol O tional; Us; Cott: G N=3,993;
4 Cardiovascular | 2009 | Alexander, B. H., Ammonium Perfluorooctanoate Production and Occupational Mortality picemiology, ccupational; ; Cottage Grove, Adults 1993 Cardiovascular  |Cerebrovascular disease risk PFOA +
20(6), 921-928. prospective Minnesota Occupational
Olsen, et al.
Mattsson K,
- Rignell-Hydbom Levels of perfluoroalkyl substances and risk of coronary heart disease: Findings from a Environ Res Case-control; N=231 cases with . .
5 Card [ 2015 us Adult: Card| I Ce rtery d PFHpA +
ardiovascular A, Holmberg S, et population-based longitudinal study 142:148-154 longitudinal ults CHD, 231 controls ardiovascular SIEMED EIREDY CEEED B
al.
Occupational and
Min, JY., Lee, KJ., | Perfl; tanoic acid i ith elevated h d h tensi
6 Cardiovascular | 2012 | V™ /Y~ Lee ., | Perfluorooctanoic acid exposure is associated with elevate andhypertension | . vironmental | Cross-sectional uUs Adults N=2,208; NHANES | Cardiovascular [Systolic blood pressure PFOA +
Park, JB., et al. in US adults. o
medicine
Shankar, A., Xi Archives of Internal Cardiovascular disease PFOA 5
7 Cardiovascular | 2012 |/ ;"D:‘:'atr;"a:: Perfluorooctanoic Acid and Cardiovascular Disease in US Adults. Medicine, 172(18), | Cross-sectional Us Adults N=1,216; NHANES | Cardiovascular |Peripheral arterial disease PFOA +
” o 1397. Hypertension risk PFOA +
Simpson, C., . N=28,541; 11% also
Winquist, A. Relation between perfluorooctanoic acid exposure and strokes in a large cohort living near a Environmental had occupational
8 Cardiovascular 2013 quist, A., P p 8 8 Research, 127, Cross-sectional us Adults P Cardiovascular  |Stroke PFOA +
Lally, C., & chemical plant. 2228 exposure; C8 Health
Steenland, K. : Project
tarling, A. P, American Journal of|
Engel, S. M., Perfl Ikyl Subst: During Pi d Validated P I ia Al Nulli N=976; it
9 Cardiovascular 2014 | . "eel ! ertiuoroatiyl Subs ances. A regna.ncy and Vaiidate " reeclampsia Among Nulliparous Epidemiology, Cross-sectional Norway Adults  pregnan Cardiovascular  |Pre-eclampsia PFUA -
Richardson, D. B., Women in the Norwegian Mother and Child Cohort Study. women
179(7), 824-833.
etal.
Cardil lar; N=5,652 t Cardiovascular |Pre-eclampsia PFOS +
ardiovascul .ar, Stein CR, Savitz Serum levels of perfluorooctanoic acid and perfluorooctane sulfonate and pregnancy Am J Epidemiol ) ! pr(.egnan p
10 Pregnancy; Birth 2009 Cross-sectional us Adults women and infants; Pregnancy Pre-term birth PFOS +
DA, Dougan M outcome 170(7):837-846. L
outcomes C8 participants Birth outcomes  |Low birth weight PFOS +
Journal of
Olsen, G. W., a
BurSIZ:/ MM Occupational and Occupational: N=652 exposed,
11 Gastrointestinal 2004 o Analysis of episodes of care in a perfluorooctanesulfonyl fluoride production facility Environmental b o us Adults N=659 for non- Cl ithiasis or acute PFOS +
Marshall, J. C., et . Cross-sectional
Al Medicine, 46(8), exposed
i 837-846
) Osteoarthritis risk (physician
Innes, K. E, Association of Osteoarthritis With Serum Levels of the Environmental Contaminants American J.ouma\ of . N=49,432 C8 Health di d| PFOA M
2 Musculoskeletal 2011 | Ducatman, A. M., Perfluorooctanoate and Perfluorooctane Sulfonate in a Large i i Cross-sectional us Adults Project o hritis risk (ph
Luster, M. |, et al. 8 ' Fop! ' 174(4), 440-450. Jj .steoan ritis risk (physician PFOS .
diagnosed)
bone mineral density at total femur
PFOS -
(TFBMD)
femoral neck (FNBMD) PFOS -




bone mineral density at total femur

PFOA -
(TFBMD)
Environ el s s i '
Vil -
Khalil, N., Ch Associati f perfl Ikyl subst: by i | densi d ost: is in the U.S.
13 | Musculoskeletal | 2016 | <2l N Chen, | Association of perfluorcalkyl substances, bone mineral density, and osteoporosis inthe US. | po (oo 4 154(1).81-| cross-sectional Us Adults N=1,914 NHANES | Musculoskeletal [bone mineral density at total femur
A, &Lee, M. Population in NHANES 2009-2010 PFNA °
87 (TFBMD)
femoral neck (FNBMD) PFNA -
lumbar spine (LSBMD) PFNA =
Ostef){wros’ls; self-reported PENA .
physician-diagnosed
Ostef){wros’ls; self-reported PEHXS .
physician-diagnosed
uhl, S. A., James- Association of Osteoarthritis with Perfluorooctanoate and Perfluorooctane Sulfonate in Environmental N=1,888 male and
14 Musculoskeletal | 2013 | Todd, T., & Bell, NHANES 20032008 Health Perspectives| Cross-sectional us Adults 1,921 female adults; | Musculoskeletal ~ [Osteoarthritis risk; self-reported PFOA +
M. L. . ,121(4), 447-452. NHANES
Evironment N=391; The Northern Lt A =
15 Endocrine 2015 Berg, V., Ngst, T., | Assessing the relatvion.ship between perfluoroalk\(l su})stanses, thyroid hormones and binding ianeiEnel 7, || Eess st NereeD Adults Nor\./vay Mothe'r—and— Endocrine 15 BRDEA _
Hansen, S., et al. proteins in pregnant women; a longitudinal mixed effects approach 63-69 Child Contaminant
Cohort Study () (A0 -
I TSH PFOS -
Environmental
Dallaire, R., N=623 Inuit adult 3 PFOS -
anare Determinants of Plasma Concentrations of Perflucrooctanesulfonate and Brominated Organic|  Science & ) Northern Quebec, nutt acu ) — -
16 Endocrine 2009 | Ayotte, P., Pereg, . " " Cross-sectional Adults population of Endocrine [ T4-binding globulin PFOS -
D. etal Compounds in Nunavik Inuit Adults (Canada). Technology, 43(13), Canada Nunavik
A 5130-5136. Free T4 PFOS +
T4 PFOA +
Knox, s. S., T:x::;:;"i: N=50,113; C8 Health
17 Endocrine 2011 Jackson, T., Perfluorocarbon exposure , gender and thyroid function in the C8 Health Project . g Cross-sectional us Adults Project; 220 years of Endocrine
. Sciences 36(4):403- T3 uptake PFOA =
Frisbee, S. J., et al. age
410
TSH PFOA +
Lewis, R. C., Serum Biomarkers of Exposure to Perfluoroalkyl Substances in Relation to Serum Int. J. Environ. Res. Free T4 PFOA +
18 Endocrine 2015 Johns, L. E., & [Testosterone and Measures of Thyroid Function among Adults and Adolescents from NHANES| Public Health, 12, | Cross-sectional us Both N=1,682; NHANES Endocrine Free T3 PFOA +
Meeker, J. D. 2011-2012 12 Total T3 PFOA +
Free T4 PFOS +
Thyroid disease PFOA +
4 . N=10,725 children
Lopez-Espinosa, Environmental
M.-J., Mondal, D. Health aged 1-17 years;
19 Endocrine 2012 | Y Thyroid Function and Perfluoroalkyl Acids in Children Living Near a Chemical Plant . Cross-sectional | US; mid-Ohio valley CA community affected Endocrine -
Armstrong, B., et Perspectives, Gyt Wesirn Hypothyroidism PFOA +
al. 120(7), 1036-1041. v q ‘g
Works facility
Thyroid disease risk; female PFOA +
Melzer, D., Rice, P P : Environmental
A tion bet fl t: d (PFOA) and thyroid di th
20 Endocrine 2010 | N., Depledge, M. ssociation between serum per UOVJ:ZREE‘ZL::” (PFOA) and thyroid disease inthe ||\t oo repectives| Cross-sectional us Adults N=3,966; NHANES Endocrine i thyroid med - or0s .
H., etal. y , 118(5), 686-692. aking thyroid medication; male
Journal of ALT (alanine aminostransferase) PFOS +
e, & U Occupational and | Occupational;
N ) Burris, J. M., Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and p ) P N ¥ ) N=518; 421 male and Hepatic GGT PFOS +
21 | Hepatic; Endocrine | 2003 ) ) p A Environmental | longitudinal and US and Belgium Adults
Burlew, M. M., & perfluorooctanoate (PFOA) concentrations and medical surveillance examinations - ) 97 female Total cholesterol PFOS +
Medicine, 45(3), | cross-sectional
Mandel, J. H. 260-270 Triglycerides; males PFOS +
Endocrine T3 PFOS 5
N=87 men and Free T4 PFOS +
Shrestha, S., " P . . Ei it d 54-74
restha Perfluoroalkyl substances and thyroid function in older adults. Environment International , nvironmen ) Us; Hudson Valley, Women agec - )
22 Endocrine 2015 Bloom, M. S., 75 206-214 International, 75, | Cross-sectional NY Adults years, w/o clinical Endocrine ra PFOS .
Yucel, R. et al. ! ) 206-214. diagnosis of thyroid
disease
Free T4 PFNA °
Environmental Total T4 PENA 2
BT Yo R, Association between maternal serum perfluoroalkyl substances during pregnancy and Health N=285 pregnant Free T4 PFUA -
23 Endocrine 2014 |W.J, Chen, P.-C, a P o v e B Y . Cohort Taiwan Both DI Endocrine
il maternal and cord thyroid hormones: Taiwan maternal and infant cohort study. Perspectives, women Total T4 PFUA -
’ 122(5), 529-534. Free T4 PFDOA -
Total T4 PFDoA =




Webster, G. M.,

Cross-Sectional Associations of Serum Perfluoroalkyl Acids and Thyroid Hormones in U.S.

Environmental

24 Endocrine 2016 | Rauch,S. A, Ste Adults: Variation According to TPOAb and lodine Status (NHANES 2007-2008). Health Perspectives| Cross-sectional us Adults N=1,525 Endocrine Free T3 PFOA +
Marie, N., etal. 124(7):935-942
Subclinical hypothyroidism risk PFOA +
Subclinical hyperthyroidism risk PFOA -
2 Endocrine 2013 Wen, L-L,, Lin, L.-| Association Betweer.x Serum Perﬂuorinaie.d.chemica‘IS ar.wd Thyroid Function in U.S. Adults: Jﬂg:l:d;&g;m Cross-sectional us Adults N=1,181; NHANES Endocrine P el s pros *
Y., Su, T.-C., etal. The National Health and Nutrition Examination Survey 2007-2010. . L .
E1456-1464. Subclinical hypothyroidism risk PFHXS +
Subclinical hyperthyroidism risk PFHxS +
Total T4 PFHXS +
Total T3 PFHXS +
) Winquist, A., & o o _ _ Epidemiology, US; mid-Ohio valley . —
26 Endocrine 2014 Perfluorooctanoic acid exposure and thyroid disease in community and worker cohorts. Cohort workers and Adults N=28,541 Endocrine Functional thyroid disease PFOA +
Steenland, K. 25(2), 255-264. )
residents
TSH PFOS =
TSH PFNA °©
TSH PFDeA =
. . ) . L TSH PFUA °©
27 Endocrine 2016 Yang, L, Li, )., Lai,| Placental Transfer of Per Iy and with Thyroid Hormones: Scientific Reports, Cohort China; Beijing Adults N=157 pregnant Endocrine Tsh PFDOA N
1, etal Beijing Prenatal Exposure Study 6:21699 women
Free T3 PFDoA o
Total T3 PFDoA =
Free T4 PFDoA
Total T4 PFDoA =
Asthma diagnosis PFOA +
IgE PFOA +
Absolute eosinophil counts PFOA +
Eosinophil cationic protein PFOA +
Asthma diagnosis PFOS +
Asthma severity PFOS +
IgE PFOS +
Absolute eosinophil counts PFOS +
Eosinophil cationic protein PFOS +
Asthma diagnosis PFHxS +
Absolute eosinophil counts PFHxS +
Eosinophil cationic protein PFHxS +
i Asthma diagnosis PFNA +
Dong, G-H, Tung, Serum poly yl conce asthma and immunological markers in a E"V';Oe";'::”ta‘ N=231 asthmatic and IgE : PFNA +
28 Immune 2013 | K.-Y., Tsai, C.-H., . N N N Case-control Taiwain; Taipei City CA 225 non-asthmatic Immune - -
etal. case-control study of Taiwanese children Perspectives, children Absolute eosinophil counts PFNA +
121(4), 507-513 Eosinophil cationic protein PFNA +
Asthma diagnosis PFDeA +
Asthma severity PFDeA +
1gE PFDeA +
Absolute eosinophil counts PFDeA +
Eosinophil cationic protein PFDeA +
Asthma diagnosis PFBS +
Absolute eosinophil counts PFBS +
Asthma diagnosis PFDoA +
Asthma severity PFDOA +
IgE PFDOA +
Absolute eosinophil counts PFDOA +
Eosinophil cationic protein PFDoA +
. Tetanus antibody levels at age 5 PFOA -
Grandjean, P., Prospective
29 Immune 2012 :S:;j;?gfns\:nl Serum Vaccine Antibody Concentrations in Children Exposed to Perfluorinated Compounds. JA'\;:I'E:;;M' study of a birth Faroe Islands CA N=587 Immune
£, etal. ’ cohort Diptheria antibody levels at age 7 PFOA -
. Environmental N=516; General 5 . )
Gra.ndjean, P Serum Vaccine Antibody Concentrations in Adolescents Exposed to Perfluorinated Health Prospective population (children Diptheria antibody levels at age 13 PFOA B
30 Immune 2017 Heilmann, C., . Faroe Islands CA Immune
. Compounds Perspectives, cohort examined at age 7 . ) }
Weihe, P., et al. Diphtheria antibody levels at age 7 PFDeA -

125(7), 077018

and 13 years)




Common cold (# of episodes) PFOA +
Rubella antibody levels PFOA -
@ B, ] | of GG ! Gastroenteritis (# of episodes) PFOA +
(TR, By LD Pre-natal exposure to perfluoroalkyl substances may be associated with altered vaccine ourna. ° Prospective and o ene.ra Rubella antibody levels PFOS -
31 Immune 2013 | L.S., Namork, E., y ) ) e Immunotoxicology, N Norway CA population; children Immune =
antibody levels and lated health in early cross-sectional Rubella antibody levels PFHXS
etal. 10(4), 373-379 age 3 years
Gastroenteritis (# of episodes) PFHxS +
Common cold (# of episodes) PFNA +
Rubella antibody levels PFNA
" Environmental
HL;{T:;ZZOE (D;az- Health N=1,877 adolescents;
32 Immune 2014 Balmes J’ R ;t Perfluoroalkyl chemicals and asthma among children 12-19 years of age: Nhanes (1999-2008).|  Perspectives, Cross-sectional us CA General population Immune Ever diagnosed with asthma PFOS +
o 122(10), (NHANES)
) 1129-1133.
Diphtheria antibody levels PFOS -
Diphtheria antibody levels PFNA -
. Diphtheria antibody levels PFDeA -
Mk, Antibody response to booster vaccination with tetanus and diphtheria in adults exposed to b Denmark; N=12; general i i i
33 Immune 2016 Shamim, Z., ¥ resp ) P P Immunotoxicology, |  Prospective X Adults P ) Immune Diphtheria antibody levels PFUA -
Ryder, L. P., et al. perfluorinated alkylates. 13(2), 270-273. Copenhagen population Tetanus antibody levels PFUA -
Diphtheria antibody levels PFDOA -
Tetanus antibody levels PFDoA =
Looker, C., Luster, : Toxicological . . N
” — Jo1e ‘;Ao :'Calaf:s :r Influenza Vaccine Response in Adults Exposed to Perfluorooctanoate and Sc'::iz,"f;;l)} Cross-sectional | US; Mid-Ohioand Adults N=411; C8 Health \mmune Seroprotection from influenza A PFOA .
Perfluorooctanesulfonate. West Virginia Project H3N2 virus
M., etal. 76-88
Diphtheria antibody levels PFOA =
Mogensen, U. B.,
s |mmune 2015 Gltandjean, P., | Structural equation modeling of immunotoxicity associated with exposure to perfluorinated Environmental Cross-sectional Denmark cA N=464; children 7 |mmune
Heilmann, C., et alkylates. Health 14:47 years of age Tetanus antibody levels at age 7 PFHsX o
al.
Asthma diagnosis PFOA +
1L-4 T-helper cytokine PFOA +
IL-5 T-helper cytokine PFOA +
Asthma diagnosis PFOS +
Asthma diagnosis PFHxS +
Science of the Total N=231 asthmatic and Asthma diagnosis PENA +
Zhu, Y., Qin, X.-D., Associati f fl Ikyl acid levels with T-hel Il- ifi ki N . . . -
36 Immune 2016 U Qin, ssociations of serum per‘ uoroaliyl acid levels wil elper cell-specific cytokines in Environment, 559, | Case-control Taiwain; Taipei City CA 225 non-asthmatic Immune IL-4 T-helper cytokine PFNA +
Zeng, X.-W., et al. children: By gender and asthma status. . ~
166-173. children IL-5 T-helper cytokine PFNA +
Serum IgE PFNA +
Asthma diagnosis PFDeA +
Serum IgE PFDeA +
Asthma diagnosis PFBS +
IL-5 T-helper cytokine PFBS +
. F PFOA =
el Fe'l;lc' 0 Human ’\::12;0 Wz"’:le:_fmrr Fecundability PFOS -
37 Reproductive 2009 L?p:v?nl:nL '&" Maternal levels of perfluorinated chemicals and subfecundity Reproduction, Cross-sectional Denmark Adults BinT1 cZ:Zn reaclrz?taed Reproductive Infertility PFOA +
L 24(5), 1200-1205
Olsen, J. ) from 1996 to 2002 Infertility PFOS +
Velez, M. P " Fecundability PFOA -
elez, M. P. uman
T E N=1,743 t Infertilit PFOA +
38 Reproductive 2015 | Arbuckle, T. E., & Maternal exposure to perfluorinated chemicals and reduced fecundity: the MIREC study. Reproduction, Cohort Canada Adults pregnan Reproductive ] —
women Fecundability PFHXS -
Fraser, W. D. 30(3), 701-709.
Infertility PFHxS +
Whitworth, K. W., ROPRRO N=416 subfecund Uifigdlityy REOA hd
39 Reproductive 2012 | Haug, L.S., Baird, Perfluorinated compounds and subfecundity in pregnant women. . Case-Control Norwa Adults regnant women and Reproductive
o g p y in preg: 23(2), 257-263. v preg B Infertility PFOS +

D.D., etal.

474 controls




Olsen GW,

. Gilliland FD, An epidemiologic investigation of reproductive hormones in men with occupational exposure| J Occup Environ . N=111 males in 1993 . N
40 R duct 1998 Cross-secti | us Adult: R ducti Prolactin; 1993 PFOA +
eproductive Burlew MM, et to perfluorooctanoic acid Med 40(7):614-622 ross-sectiona ults and 80 in 1995) eproductive rolactin
al.
i LH PFOA +
Vested A, Ramlau-| = Health
. ested A, Ram'au Associations of in utero exposure to perfluorinated alkyl acids with human semen quality and nviron Hea . N=169 males aged .
41 Reproductive 2013 |Hansen CH, Olsen reproductive hormones in adult men Perspect Cross-sectional Denmark Adults 18-21 years Reproductive A B
SF, etal. P : 121(4):453-458. ¥ +
Int J Hyg Envi N=540 adol t: SHGB PrOA :
. . - . ntJ Hyg Environ =540 adolescents
Tsai MS, Lin CY, A tion bet fl Ikyl subst: d ductive hy dol t: FSH PFOS -
2 Reproductive | 2015 | o > HRCY, ] Association between perfiuoroallyl substances and reproductive hormones in adolescents | 1. 1th 218(5):437- | Cross-sectional Taiwan Both and young adults Reproductive
Lin CC, et al. and young adults Testosterone PFOS -
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Triglycerides PFOA +
Yang Q, Guo X, |Association of serum levels of perfluoroalkyl substances (PFASs) with the metabolic synd Sci Total Envi N=148 males HDL Cholesterol PrxS -
8 n r i N . . - -
104 | Hepatic; Diabetes | 2018 | a8 Guo ssoclation of serum levels of perfluoroaky] substances s) with the metabolic syncrome| - Sci Total Environ o o cectional China Adults diagnosed with Hepatic Triglycerides PFHXS +
Sun P, etal. (MetS) in Chinese male adults: A cross-sectional study 621:1542-1549 )
Metabolic Syndrome HDL Cholesterol PFNA +
Triglycerides PFNA +
Kang H, Lee H, Perfluoroalkyl acids i f Korean children: O lated d SciTotal Envi Hepatic [T @it R z
L . ang H, Lee H, erfluoroalkyl acids in serum of Korean children: Occurrences, related sources, an ci Total Environ _ o
105 | Hepatic; Endocrine | 2018 Moon HB, et al. associated health outcomes 645:958-965 Cohort Korea CA N=150 children LDL Cholesterol PFUA +
Endocrine Free T4 PFNA i
Dufour P, Pirard N=214 cord blood Hypothyroidism PFOA +
ufour P, Pirar ) between organot in cord blood and thyroid functionn | Environ Pollut ) cord bloo ) veory
106 Endocrine 2018 |C, Seghaye MC, et N 5 Cohort Belgium Both samples from Endocrine .
newborns and mothers from Belgian population 238:389-396 Hypothyroidism PFOS +
al pregnant women
Free T4 in mother PFOA =
Preston EV, Environ Health Neonatal T4 PFOA -
Mat | pl. - and polyfll Ikyl subst: trations if | d N= 732 moth: d
107 Endocrine 2018 |Webster TF, Oken CLEE [IEERE (T pDYf uoroa' i ‘Su stance ct?ncer, rationsn ear\{pregnancy an Perspect Prebirth Cohort us Both mothers an Endocrine TSH (TPOADb positive mothers) PFOS -
maternal and neonatal thyroid function in a prospective birth cohort: Project Viva (USA) 480 neonates
E etal. 126(2):027013 Neonatal T4 PFOS -
Neonatal T4 PFHxS =
Tsai MS, Lin CC, Envil Pollut P tive Birth N=118 mother-infant Cord Blood T4 PFOS .
108 Endocrine 2017 C;a;n M’H,"::t aI' Perfluoroalkyl substances and thyroid hormones in cord blood 22‘2?::3»;4; rospce;ch:ret ! Taiwan Both B T):irser-m an Endocrine Cord Blood TSH PFOS +
Free T4 levels PFNA +
Crawford NM T3 levels PFOA +
. rawtor ’ Effects of perfluorinated chemicals on thyroid function, markers of ovarian reserve, and Reprod Toxicol .
109 Endocrine 2017 |Fenton SE, Strynar| . Cohort us Adults N=99 women Endocrine T3 levels PFNA +
natural fertility 69:53-59
M, etal Free T4 levels PFNA +
.Numb.er of lower respiratory PFOA .
infections (0-10 years of age)
Number of lower respiratory PFOS .

infections (0-10 years of age)




Impinen A, Number of lower respiratory PENA .
d wi i i infections (0-10 years of age)
110 |mmune 2018 Nygaard UC, Prena.ta\ ex!)osure to per y (PFASs) with res.plratorv tract Environ Res Birth Cohort Oslo A N=641 infants \mmune i ions ( Y ge)
Lodrup Carlsen infections but not allergy- and asthma-related health outcomes in childhood 160:518-523 Number of lower respiratory PEUA
+
KC, etal infections (0-10 years of age)
Number of common colds (0-2 PFUA .
years of age)
Number of lower respiratory
PFOSA +
infections (0-10 years of age)
Goudarzi H, 3 q A i 3 o o i i i i
?u ar.zl Prenatal exposure to perfluoroalkyl acids and prevalence of infectious diseases up to 4years |Environ Int 104:132{  Prospective N=1558 mother-child et et ifiziinun lseEee PFOS *
111 Immune 2017 Miyashita C, Japan Both N Immune
OkadaE, et al. of age 138 cohort pairs Risk of total infectious diseases PEHXS N
(females only)
Gestational Age (boys only) PFOS +
Birth Weight PFOA -
112 Developmental 2017 Li .M, Zeng XW, Isomers of perfluorooctanesulfonate lPFqS) in cord serum and birth outcomes in China: Environ Int 102:1-8 Cohort China Both n=321 mo.ther-infant Devel al Birth Weight PFOS -
Qian ZM, et al Guangzhou Birth Cohort Study pairs Birth Weight (boys only) PFOS -
Birth Weight (boys only) PFHpA -
Birth Weight (girls only) PFDOA -
Birth Length PFOA -
Lauritzen HB, Small for Gestational Age PFOA +
itz
! Mat | levels of d hloril d indi f fetal | Pediatr Res 81(1- =424 mother-child i
113 Developmental 2017 |LaroseTL, OienT, ELEE IS D @D M an ines andindices of feta EdizofessLl Case-cohort Sweden Both " mo. er-cnt Developmental el o Ces el A e PFOA +
il growth: A Scandinavian case-cohort study 1):33-42 pairs only)
Birth Weight PFOS =
Birth Length PFOS -
Card tar: Birth Savitz DA, Stein Enid ' Cardiovascular Pre-eclampsia PFOA +
5 Birt P . .
114 |CArAOVASURL BN 5015 | CR, Bartell SM, et | - Perfluorooctanoic acid exposure and pregnancy outcome in a highly exposed community pemiooey Cohort us Both n=11737
Outcomes al 23(3):386-392 Developmental Low Birth Weight PFOA -
) - Echogenicity of intima media PENA .
Lind PM, Salihovic Environ Res complex (females only)
115 Cardiovascular 2012 | S, van Bavel B, et Circulating levels of perfluoroalkyl substances (PFASs) and carotid artery atherosclerosis 152:157-164 Cross-sectional Sweden Adults n=1016 70 year olds Cardiovascular Intima Media Thickness in Common
al ’ Carotid Artery (combined PFOSA +
population)
i Increased etradiol levels PFOA +
Y20, @, R Shi, - |4 biaod per- and pol lacental steroi enzyme, and cord |  Environment Lalztr:\oeua\:::i f:!) o lower mean birth weight PFAS +
116 | Endocrine function | 2019 |Wang, W. Han, et P i ! P o yme, International Cohort study - Adults N=351 endocrine 8
al blood reproductive hormone 120:573-582 Shandong province, Testosterone PFOA +
) ) ) China P450aromatase PFUA +
The Journal of
clinical
Lin LY, Wen LL, Su association between serum perfluorooctane sulfate concentration and bone minerall ) . Both; Total lumbar spine bone mineral
117 M loskeletal 2014 d | d | Cross-sect | us N=2339 Mi loskeletal PFOS =
usculoskeletal TC, etal density in US premenopausal women: NHANES, 2005-2008 endocrino ogy an ross-sectiona NHANES usculoskeleta density
metabolism
99(6):2173-2180
GGT PFOA +
: Total Bilirubin PFOA -
Olsen GW, Zobel | Assessment of lpid, hepatic, and thyroid parameters with serum perfluorooctanoate (PFOA) | Mt ATch Occup Hepatic HDL Cholesterol PFOA ¥
118 | Hepatic; Endocrine | 2007 ’ pid, hepatic, N ,V P ) 3 P Environ Health Cross-sectional Belgium and US Adults N=552
LR concentrations in fluorochemical production workers 81231246 Triglycerides PFOA +
’ . Free T4 PFOA +
Endocrine
T3 PFOA +
TCEEY Community exposure to perfluorooctanoate: Relationships between serum levels and certain 4 Occup Environ
119 Hepatic 2006 | Zhang H, Shofer Y exp P : P Med 48(8):771- | Cross-sectional uUs Both N=371 Hepatic Abnormal AST PFOA -
health parameters
FS, et al 779
Total Cholesterol PFOA +
U.S. Environmental
R t on the ting held on Friday 20th and Saturday 21st 2004 at the || 't Montchanil
120 Hepatic 2004 Costa G eport on the meeting he'c on Friday 20th and Saturday 21 atthe Innat Montchanin | 5 e ction Agency. | Cross-sectional Italy Adults N=35 Hepatic
Village (Wilmington, USA) with 3M and DuPont delegations Non-HDL Cholesterol PFOA +
AR226-1866
Environ Health
Nelson JW, Hatch | E: t hemicals and bod ight, and insuli ist: i Both;
121 Hepatic 2010 :;’\’;/‘ebst'e;; xposure to poly b ;";r;l e u'la;o: LB Bl IED FEEBEREE D Perspect Cross-sectional uUs NH:NES N=860 Hepatic Non-HDL Cholesterol PFOA 3
g 8 ->- pop! 118(2):197- 202
Uni ity of Ret ti
122 Endocrine 1992 | Gillland FD Fluorocarbons and human health: Studies in an occupational cohort: A thesis niversity o etrospective uUs Adults N=115 Endocrine TSH PFOA +

Minnesota, 29-229
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Envii Res 126:51- Both;
| 123 Endocrine | 2013 | Jain RB Association between thyroid profile and perfluoroalkyl acids: Data from NHNAES 2007-2008 | " 5;5 Cross-sectional | uUs | NH:NES | N=1525 | Endocrine Total T3 PFOA 3
B MC, Envii Int 88:74- N=637 (2005-2006;
124 Immune 2016 . u.ser. X Perfluoroalkyl substances and food allergies in adolescents nviron In Cross-sectional us CA; NHANES ( ) Immune Food allergies PFOA +
Scinicariello F 79 N=701 (2007-2010)
125 |mmune 2012 Okad‘? E, Sasaki S, | Prenatal exposure to perfluorinated cljemicalf a.nd relationship with allergies and infectious Environ Res Prospective fanan Both N=343 pregnant oo e b (e el ETE R
SaijoY, etal diseases in infants 112:118-125 cohort women
Risk of Allergic Diseases (females PFOA ~
only)
. ) . Risk of Allergic Diseases (females
Okada E, Sasaki S, Ei Int 65:127- P ti PFNA -
126 Immune 2014 2 a. , asaki 5, Prenatal exposure to perfluoroalkyl acids and allergic diseases in early childhood nviron In rospective Japan Both N=2603 infants Immune only)
Kashino I, et al 134 cohort Risk of Allergic D1 D ’
isk of Allergic Diseases (females PFUA R
only)
Eczema (females only) PFUA -
Qin XD, Qian ZM, N=132 child d [ e i
in ian =132 children an
g . Environ Res 155:15-| Cross-sectional Asthma PFOS +
127 Immune 2017 | Dharmage SC, et | Association of perfluoroalkyl substances exposure with impaired lung function in children nviron Res ross-sectiona Taiwan CA 168 matched Immune
21 Case-control Asthma PFHXS +
al controls
Asthma PFNA i
Steenland K, Zhao Environ Health
Ulcerati litis and perfl tanoi d (PFOA) in a hight d lati f Both; C8 " .
128 jmmune 2013 | L, Winquist A, et cerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of Perspect Cohort Us oth; 2 N=28441 immune Ulcerative Colitis PFOA +
community residents and workers in the Mid-Ohio Valley Community
al 121(8):900-905
N Gestational diabetes mellitus PFBS +
Xu, H, 0. Zhou, I Exposure to elevated per- and polyfluoroalkyl substances in early pregnancy is related to Environment Case Control
129 Diabetes 2020 |Zhang, X. Chen, H.|. p . N > . LR y U ULIEs N v P International Shanghai, China Adults N=2,460 Diabetes . N .
increased risk of gestational diabetes mellitus: A nested case-control study in Shanghai, China,| study Gestational diabetes mellitus PFDoA +
Zhao, H. Ly, et al. 143:105952.
Mumps Antibody Titers PFOA -
Rubella Antibody Titers PFOA -
Rhinitis PFOA +
Mumps Antibody Titers (whole PFOS :
N=1191 cohort)
N M Antibody Tit
Stein CR, adolescents (NHANE (s:rTS;swt?v; :ul;/cn;hi:i) PFOS )
" Perfluoroalkyl and polyfluoroalkyl substances and indicators of immune function in children Pediatr Res . S 1999-2000 and 2003
130 | 2016 McGt K, C -sect | us CA; NHANES I i i
mmune \ccovern I, aged 12-19 y: National Health and Nutrition Examination Survey 79(2):348-357 ross-sectiona i 2004) and N=640 mmune Rubella Antibody Titers PFOS .
Pajak AM, et al (seropositive subcohort)
adolescents (NHANES
2005-2006) Allergic Sensitization Plants PFOS -
Allergic Sensitization Cockroach or PFOS ~
Shrimp
Allergic Sensitization Mold PFOS +
Rubella ArThbody Titers PEHXS :
(seropositive subcohort)
Risk of Hospitalization for Infectious|
Disease in Young Children (girls PFOA +
only)
N=1400 pregnant Ri.sk of H.ospitalizati?n for Infectious;
women and young e Disease in Young Children (boys PFOA -
children only)
Fei C, McLaughlin . N . . . . N Risk of Hospitalization for Infectious|
Immune; N Prenatal exposure to PFOA and PFOS and risk of hospitalization for infectious diseases in early| Environ Res . . ; .
131 ! 2010 | JK, Lipworth L, et ; Cohort Denmark Both Disease in Young Children (girls PFOS +
Reproductive al childhood 110(8):773-777 only)
Breastfeeding Duration < 3 months PFOA +
N=1347 pregnant ) Breastfeeding Duration < 6 months PFOA +
Reproductive
women
Breastfeeding Duration < 3 months PFOS +
Breastfeeding Duration < 6 months PFOS +
Smit LA, Lent: Pi tal t i he | d asthi d hool| All 70(6):653- G land and . " " |
132 Respiratory 2015 | >MCLA Lenters Prenatal exposure to envir chemical and asthma and eczema in schooll Allergy 70(6) Cohort reeniand an cA N=1024 children Respiratory |Current Wheezing (Ukraine cohort) PFOS -
V, Hoyer BB, et al age children 660 Ukraine
|N|emory Loss (self-reported) PFOA -
e Gallo V, Leonardi | Serum perfluoroalkyl acids concentrations and memory impairment in a large cross-sectional BMJ Open P Adults; C8 | N=21024 adults over |Memory Loss (self-reported) PFOS -
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G, Brayne C, et al study 3(6):e002414 Community 50 years of age |N|emory Loss (self-reported) PFHxS
|Memory Loss (self-reported) PFNA
Memory and Learning Scores PFOA
Int J Hyg Environ Executive Function Scores PFOA
Shrestha S, Bl N=126 older adult:
134 Neurological 2017 restha 5, Bloom Perfluoroalkyl substances, thyroid hormones, and neuropsychological status in older adults | Health 220(4):679- | Cross-sectional us Adults older adults Neurological Memory and Learning Scores PFOS
MS, Yucel R, et al 685 aged 55-74 years old
Visual and Spatial Function Scores PFOS
Raymer JH, LH PFOA
135 R 2012 Michael LC, Concentrations of perflu.on.)octan.e sulfonate (PFOS) and_ perfluorooctanoate (PFOA) and their| Reprod Toxicol Cross-sectional us Adults N=256 men RepElEhe
Studabaker WB, associations with human semen quality measurements 33(4):419-427 Free Testosterone PFOA
etal
Estradiol (boys only) PFOA
Testosterone (boys only) PFOS
Zhou Y, Hu LW, q ith reproductive h levelsin | Environ Int 94:189 N=225 adolescents 13 Estradiol (boys only) PrAS
, ) +189- N =, N .
136 Reproductive 2016 1ouY, Hu 1 of per ! exposure with reproductive hormone fevels in nviron In Cohort Taiwan cA adolescents Reproductive  [Testosterone (boys only) PFNA
Qian ZM, et al adolescents: By sex status 195 15 years old
Testosterone (boys only) PFDeA
Testosterone (girls only) PFDoA
Testosterone (boys only) PFHXA
SperT Motility: Ir\creased PFOA
Curvilinear Velocity
Sperm Morphology: Increased
Percentage of Sperm Head PFOA
Acrosome Area
Sperm Morphology: Decreased PFOA
Percentage Sperm with Coiled Tails
Buck Louis GM, ility: i
uCChoe:|; , Environ Health Adultes e N=96in ipern; l:lotlllty, Increased Distance PFOS
137 Reproductive 2015 . g Perfluorochemicals and human semen quality: The LIFE study Perspect 123(1):57- Cohort us g Michigan N=366 in Reproductive ravele
Schisterman EF, 63 study Texas Sperm Morphology: Increased .
etal Percentage of Normal Sperm
Sperm Morphology: Decreased PENA
Percentage Sperm with Coiled Tails
Sperm Morphology: Increased
PFDeA
Sperm Head Length e
Sperm Morphology: I.Jecre.ased . PFDeA
Percentage Sperm with Coiled Tails
Toft G, Jonsson B N fluorinated ds and h lity in Arctic and E Hum R " & land, Poland, Increased Percent Motile Sperm PFOA
138 Reproductive 2012 | BA, Lindh CH, et xposure to perfluorinated compounds and human semen quality in Arctic and European um Repro Cohort reenland, Poland, Adults N=588 males Reproductive
al populations 27(8):2532-2540 and Ukraine Percent Normal Sperm PFOS
Percent Normal Sperm PFHXS
) Y-X Chromosome Ratio (whole
e Serum levels of perfluorinated compounds and sperm Y:X chromosome ratio in two European| Reprod Toxicol Greenland, Poland, cohort) A
139 Reproductive 2012 Giwercman YL, 2 ‘p . p ) B [ Cross-sectional T ' Adults N=588 men Reproductive
populations and in Inuit from Greenland 34(4):644-650 and Ukraine Y-X Chromosome Ratio (Greenland
Jonsson BA, et al PFOS
cohort)
Endometriosis PFOA
Buck Louis GM, Epidemiolo Matched E::o(::\e’\il:g:i;ate e ProA
140 | Reproductive | 2012 | Peterson CM, Perfluorochemicals and endometriosis. The ENDO study P 8y uUs Adults N=473 Reproductive |
23(6):799-805 exposure cohort Risk of Moderate to Severe
ChenZ, etal . PFOS
Endometriosis
Endometriosis PFNA
. " Lower BMI level PFOS
Yeung, E. H., E. M. - N . . q Obesity (Silver -
E d d t d born dried blood spots and early childhood longitudinal
141 | Endocrine function | 2019 |Bell, R. Sundaram,| ~X2™'"'"é Endocrine cisruptors meaiu,re in newborn "he (T o1 S T R 7 Gl T Spring, MD) °:g' ! 'n: New york, USA cA N=3111 Endocrine
el growth in a prospective cohort. 27(1):145-151. cohort study e B PFOA
G bell S, R R d Toxicol Adults; N=753 d
142 Reproductive 2016 :;Ir,‘ioflad; A;ZA Perfluoroalkyl substances and endometriosis in US women in NHANES 2003-2006 :’;gao;’;‘;c Cross-sectional us NH/:NESlS 20-50‘”\/0;2?5"0758 Reproductive Self-reported Endometriosis PFOA
Lyngsg J, Ramlau- I q A
Menstrual cycle characteristi fertil fi G land, Poland and Uk Hum R d G land, Poland, N=1623 t
143 Reproductive 2014 |Hansen CH, Hoyer Tl G G S ([ UL WD I (COEEI R, BT B raine um Repro Cross-sectional [EETELTE BT Adults pregnan! Reproductive Long Menstrual Cycle PFOA

BB, etal

exposed to perfluorinated chemicals: A cross-sectional study

29(2):359-367

and Ukraine

women




Romano ME, Xu Environ Res Longitudinal N=336 women; Breastfeeding Duration <3 months PFOA +
144 Reproductive 2016 | Y, Calafat AM, et | Maternal serum perfluoroalkyl substances during pregnancy and duration of breastfeeding |10.1016/j.envres.20 Cohort us Both HOME study Y Reproductive
al 16.04.034 Breastfeeding Duration <6 months PFOA +
Early PFOA +
Hysterectomy PFOA +
Taylor KW, Environ Health il Hysterectomy PFOS ¥
145 Reproductive 2014 Hoffman K, Polyfluoroalkyl chemicals and menopause among women 20-65 years of age (NHANES) Perspect Cross-sectional us NHANE’S N=2151 women Reproductive Early Menopause PFHXS +
Thayer KA, et al 122(2):145-150 Hysterectomy PFHXS +
Early Menopause PFNA +
Hysterectomy PFNA +
Breastfeeding Duration (in months) PFOA -
Exclusive Breastfeeding (in PFOA :
months)
) Breastfeeding Duration (in months) PFOS -
Timmermann CA,
Budtz-) R d Toxicol i ing (i
146 Reproductive 2017 E :etzer:erfe’\:;ez[ Shorter duration of breastfeeding at elevated exposures to perfluoroalkyl substances :’;12642?;0 Cohort Faroe Islands Both N=1130 women Reproductive :;:Ir:::)e Breastfeeding (in PFOS -
al
Breastfeeding Duration (in months) PFNA -
Exclusive Breastfeeding (in PENA :
months)
Breastfeeding Duration (in months) PFDeA -
Vagi SJ, Azziz- Exploring the potential association between brominated diphenyl ethers, polychlorinated . Polycystic Ovary Syndrome Risk PFOA i
. . . . . v. . [BMC Endocr Disord N=52 cases n=50 .
147 Reproductive 2014 | Baumgartner E, |biphenyls, organochlorine pesticides, perfluorinated and Case-control us Adults Reproductive . .
ot . . Rk 14:86 controls Polycystic Ovary Syndrome Risk PFOS +
Sjodin A, et al in polycystic ovary syndrome: A case-control study
J o o et :SE;?::S“W (Primiparous PFOA .
grgensen KT, . N . nviron Heal .
148 Reproductive 2014 [specht10, Lenters Supplemental files to "Perfluoroalkyl substances and hm.e to pregnancy in couples from 13:116.10.1186/14 Cohort Greenland, P.oland, Adults n=938 pregnant Reproductive Fecundability PENA N
Greenland, Poland and Ukraine and Ukraine women
V, etal 76-069x-13-116
Infertility PFNA +
Vestergaard S,
149 R 2012 Nielsen F, Association between perﬂuorinat.ed compounds and .time to preg.nancy in a prospective Hum Reprod Prospective Denmark Adults n=222 nulliparous R Fecundability NS N
Andersson AM, et cohort of Danish couples attempting to conceive 27(3):873-880 cohort couples
al
Endometriosis-related infertility PFHXS -
N= 157 women with
Wang B, Zhang R, Environ Int 102:207 dometriosis- Endometriosis-related infertility PFNA -
150 | Reproductive | 2017 | 006> £hene Perfluoroalkyl substances and endometriosis-related infertility in Chinese women nviron ™ Case-control China Adults encometriosts Reproductive
JinF,etal 212 related infertility and
178 controls Endometriosis-related infertility PFHpA -
Endometriosis-related infertility PFBS +
B;:::::;;Gl:ﬂ' Environ Health Prospective N=501 couples; LIFE
151 Reproductive 2013 3 4 Persistent environmental pollutants and couple fecundity: The LIFE Study Perspect 121:231- B us Adults B B Reproductive Fecundability: Female serum PFOSA PFOSA -
Schisterman EF, 236 cohort study
etal
i Preterm Birth PFOA -
Whitworth KW, . N " : "
worth € Perfluorinated compounds in relation to birth weight in the Norwegian Mother and Child | Am J Epidemiol
152 Pregnancy 2012 Haug LS, Baird Cohort Norway Both N=901 infants Developmental .
DD, etal Cohort Study 175(12):1209-1216 Preterm Birth PFOS -
Gestational Age PFOA -
Wu K, Xu X, Pen, Association between maternal exposure to perfluorooctanoic acid (PFOA) from electronic =67 (PR i i
153 Pregnancy 2012 ! - Peng 3 " B Environ Int 48:1-8 | Case-control China Both women at each Devel | [Birth Weight RO ~
L etal waste recycling and neonatal outcomes ) a
hospital (2 hospitals) Birth Length PFOA -
Wikstrom, S., C. Preeclampsia PFOS +
154 Pregnancy 2019 H. Lindh, H. Shu, |Early pregnancy serum levels of perfluoroalkyl substances and risk of preeclampsia in Swedish| Scientific Reports Case Control Sweden Adults n=1773 Pregnancy
and C.-G. women 9(1):9179. study Preeclampsia PFNA +
Bornehag.
" o Preterm PFOS +
Sagly SK, Rifas- Early-pregnancy plasma concentrations of perfluoroalkyl and birth in AmJ Prospective N=1645 pregnant
155 Pregnancy 2018 |Shiman SL, Fleisch LR e 3 o B U N B us Both . e Developmental . . N
Project Viva: Ct by pregnancy ? 187(4):793-802 cohort women Birth Weight for Gestational Age PFNA -
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Hamm MP, J Expo Sci Environ NC252 pregnant Preterm Birth PFHxS -
156 Pregnancy 2010 | Cherry NM, Chan Maternal exposure to perfluorinated acids and fetal growth Epidemiol Cohort Canada Both =252 preg Developmental ]
N women Small for Gestational Age PFOS -
E etal 20(7):589-597
AT L, (el The relationship between birth weight, gestational age and perfluorooctanoic acid (PFOA) Reprod Toxicol N=1555 singleton
157 Birth Outcomes 2009 | JM, Shofer FS, et P .g e o g. P P! Cross-sectional us CA T & Developmental Low Birth Weight PFOA -
al contaminated public drinking water 27:231-238 infants
Environ Health
Savitz DA, Steil Relationship of perfl tanoic acid t It based on birth . .
158 Birth Outcomes 2012 avitz ein elationship of perfluorooctanoic act expo%ure ?pregnancy outcome based on bir Perspect Case-control us CA N=4547 infants Developmental Small for Gestational Age PFOA +
CR, Elston B, et al records in the Mid-Ohio Valley
120(8):1201-1207
Alkhalawi E, ) Toxicol Eniron Ponderal index PFOA =
159 Birth Outcomes 2016 Kasper- Perfluoroalkyl acids (PFAAs) and anthropf)metric 'measures in the first year of life: Results Health A 79(22- Retrospective Sy Both N=156 mo.ther—infant D )
Sonnenberg M, from the Duisburg Birth Cohort cohort pairs. Ponderal index PFOS -
o 23):1041-1049
Wilhelm M, et al
Ashley-MartinJ IntJ Environ R Gestational Weight Gain PFOA +
shley-Martin J, . . N Int J Environ Res
Mat | and tal levels of perfl lkyl subst: lation t tational ht N=1723 it
160 Birth Outcomes 2016 |Dodds L, Arbuckle aternal and neonatal levels of pertiuoroal ;ilnsu stances in relation to gestational weig! Public Health Cohort Canada Both women: MTI;EEi":tr:ld Developmental G 1onal Weight Gai PEOS
TE, et al 8 13(1):146 3 y estational Weight Gain +
Cao W, LiuX, Liu | Perflucroalkyl substances in umbilical cord d gestational and postnatal growth in a |Environ Int 116:197]  Longitudinal ElEre IR -
e Birth Outcomes | 2018 | €° W LiuX, Liu | Perfluoroalkyl substances in umbilical cord serum and gestational and postnatal growth in a | Environ In 8 ongitudina il @ N T — - W= EEm T
X, etal Chinese birth cohort 205 Birth Cohort
Birth Length PFUA +
Birth Weight PFOA -
Fei C, McLaughlin Environ Health N=1400 pregnant !r eig
162 | Birth Outcomes | 2007 | JK, Tarone RE, et | Perfluorinated chemicals and fetal growth: A study within the Danish National Birth Cohort | Perspect 115:1677-|  Birth Cohort Denmark Both e D Birth Length PFoA -
al. 1682 Abdominal Circumference PFOA -
163 Birth Outcomes 2011 Kim SK, Lee KT, Distribution of pentﬂuoroc}.\emicals between sera and milk from the same mothers and Environ Pollut Cross-sectional South Korea Both n=44 pregnant et |C°'d TSH PFOA i
Kang CS, et al implications for prenatal and postnatal exposures 159(1):169- 174 women Cord T3 PFOS =
N=27 infants with Thyroid Stimulating PFOA ~
164 Birth Outcomes 2016 KIrl"\ DH, Kim UJ, Perﬂuoroal‘ky‘l substances in sferum from Soutff Kort?an |.nfants thh congenital Environ Res Case-control South Korea A cong‘en‘ltal D Immunoglobulin Levels
Kim HY, et al hypothyroidism and healthy infants - Its relationship with thyroid hormones 147:399-404 hypothyroidism n=13 Thyroid Stimulating PEHIS N
controls Immunoglobulin Levels -
n=513 infants in
LentersV, Environ Health Greenland subcohort
Port 18 Pi tal id, and hlori d t birth weight G land, Poland, =557 infants i
165 | Birth Outcomes | 2016 | "Orengent, | Prenata > EEELE ine exposures and term birth weig Perspect Cohort reentand, Poland, Both n=ss7intants in Developmental  |Birth Weight PFOA -
Rignell-Hydbom in three birth cohorts: Multi-pollutant models based on elastic net regression 124(3):365-372 and Ukraine Ukraine subcohort
A etal : n=180 infants in
Poland subcohort
Birth Weight PFOA -
Maisonet M,
Environ Health
Terrell ML, Mat | i f y duri d fetal and . N
166 | Birth Outcomes | 2012 McGZ:I:n et aterna ° et ot b ”“’S”"g pregnancy and fetal an Perspect Cohort Great Britain Both N=447 girls Developmental |\ oFOs
S P 8 8 120(10):1432-1437 irth Weight -
Birth Length PFOS -
Birth Weight PFHXS -
Birth Length PFHxS -
. Birth Weight PFOA -
Dzisey (Y el Association of prenatal exposure to perfluoroalkyl substances with cord blood adipokines and| Environ Res Prospective N=168 mother-infant Ponderal Inde PFOS
= | X -
167 Birth Out 2017 | S, Miyashita C, et J; Both Devel |
! utcomes PUIIFRIINGE birth size: The Hokkaido Study on environment and children's health 156:175-182 Cohort apan © pairs
al Cord Total Adiponectin PFOS +
Birth Weight PFOA -
Adiposity at Birth PFHXS -
Devell al
Storling AP Eviron Health Birth Weight PFNA -
168 Birth Outcomes; 2017 Azr ;nti I ’ Perfluoroalkyl substances during pregnancy and offspring weight and adiposity at birth: "V;r:r: e:ta Prospective us Both N=604 mother-infant Adiposity at Birth PFNA -
Diabetes Hammfn RF, ét al Examining mediation by maternal fasting glucose in the Healthy Start Study 125(6):567016 Cohort pairs Maternal glucose levels PFOA +
5 Maternal glucose levels PFHxS +
Diabetes
Maternal glucose levels PFNA +
Maternal glucose levels PFDeA +




Apelberg FJ, - . Head Circumference PFOA
. . nviron Heal ~ .
169 Birth Outcomes 2007 Witter FR, Cord serum concentrations of perflu.orooctan.e sulfonat.e (PFOS.) and perfluorooctanoate Perspect 115:1670-| Cross-sectional us cA N»341. singleton Devel | Ponderal Index PFOA
Herbstman JB, et (PFOA) in relation to weight and size at birth 1676 births Head Circumference PFOS
al Ponderal Index PFOS
Kobayashi S, . Expo Sci Environ .
Effects of tal perfls Ikyl acid d blood I1GF2/H19 methylati d N=177 mother-infant
170 Birth Outcomes 2017 |Azumi K, Goudarzi ects of prenatal per uon;:d:r:ﬁn::::_sr:‘erizzéﬁgD S:JOd 4 methylation an Epidemiol Cohort Japan Both m:irser infant Developmental Ponderal index PFOS
H, etal p : u 27(3):251-259 P
Chemosphere
Wen, H.J,, S. o i A a . P 231:25-31. . :
P tal fl t id ted with 1 't at di it 5 Pi ti N=863 ther-infant
171 Immune 2019 L.Wang, Y. C. (I R EE EsE @R assoc}a (T G I B E EnTE B https://doi.org/10.1} DEEIEENE Taiwan both mo. er-intant Immune early onset atopic dermatitis PFOA
year-old children. ) Cohort pairs.
Chuang, et al. 016/j.chemosphere
.2019.05.100.
Lee YJ, Kim M-K, | Ct trati f perfl Ikyl ds il t | and umbilical cord d birth Ch hi . N=59 t
172 Birth Outcomes 2013 ee m oncentrations of perfluoroalkyl compounds ‘T‘ maternaland umbiiical cord sera anc ir emosphere Cross-sectional South Korea Both pregnant Developmental Ponderal Index PFOS
BaeJ, etal outcomes in Korea 90(5):1603-1609 women
ot s, e
173 Birth Outcomes 2014 Bonefeld- Prenatal exposure to perfluoroalkyl substarfces and the risk of congenital cerebral palsy in Am J Epidemiol Case-Cohort Denmark Both cerebral Devel . |Congenital Cerebral Palsy (boys PFOS
Jorgensen EC, et children 180(6):574-581 only)
al palsy (cases) n=550
controls
Environ Health i i
) Washino N, Saijo | Correlations between prenatal exposure to perfluorinated chemicals and reduced fetal niron Hea Prospective N=428 women and Birth Weight (males only) PrOS
174 Birth Outcomes 2009 . Perspect 117:660- Japan Both . Developmental ) .
Y, Sasaki S, et al growth 667 Cohort infants Birth Weight (females only) PFOS
Environ Health
Bach CC, Bech BH, P it N=1,507 nullj
175 Birth Outcomes 2016 a!:ohr éA’e:‘ al ’| Perfluoroalkyl acids in maternal serum and indices of fetal growth: The Aarhus Birth Cohort 10.128;;2:‘8;15100 Cohort Denmark Both i wo:::g[:parous Developmental Birth Weight PFHxS
46
Birth Weight (girls only) PFNA
Birth Weight (girls only) PFDeA
Small for Gestational Age (girls PEDeA
Environ Health n=117 boys and 106 only)
176 Birth Outcomes 2016 Wang Y, Adgent | Prenatal exposure to perflu?rocarboxylic acids gPFCAs) and fetal and postnatal growth in the Perspect 10.1289/e Cohort Taiwan Both girls examined at 2,5, Birth Weight (g'\fls only) _ PFUA
M, Su PH, et al Taiwan maternal and infant cohort study 8, and 11 years of Small for Gestational Age (girls
hp.1509998 PFUA
age only)
Birth Weight (girls only) PFDoA
Head Circumference (girls only) PFDoA
Callan AC,
. Rotander A, Maternal exposure to perfluoroalkyl acids measured in whole blood and birth outcomes in Sci Total Environ . N N=98 pregnant . .
177 Birth Out 2016 Cross-secti | Australl Both Devel tal Optimal Body Weight PFUA
i utcomes T s— o —— 569-570:1107-1113 | Cross-sectiona ustralia o women evelopmental ptimal Body Weig
al
Robledo CA, Environ Health
! Pi ti it | and pat | t istent llutants and birth size: Pi ti Birth Weight (b I 1\
178 |Birth Outcomes 2015 |Yeung E, Mendola " concePtion maternaland paternal exposure to persistent organic poflutants and birth size:|p o 193(1).8g. |- OsPective us Both N=234 couples Developmental irth Weight (boys only) (only PFOSA
The LIFE study Cohort maternal association)
P, etal 94
Journal of Increased blood glucose PFHxS
CHERE i Association of serum levels of with diabetes mellitus Environmental Case Control
179 Diabetes 2018 |Zhang, Y. Teng, et L ’ . . Beijing, China Adult N=252 Diabetes
al and postpartum blood glucose. Sciences (China) study Increased blood glucose PFOS
) 69:5-11
Leonard RC, Retrospective cohort mortality study of workers in a polymer production plant including a Ann Epidemiol Retrospective U.S. polymer Occupational
180 Diabetes 2008 | Kreckmann KH, P Y v 3 poly P! P s P P > P _V ; Adults P Diabetes Diabetes deaths PFOA
Sakr C, et al reference population of regional workers 18:15-22. cohort manufacturing facility| (n=6,027)
Lundin JI, Epidemiolo; Retrospective 3M Company plant in Occupational Diabetes Diabetes deaths PFOA
181 Diabetes; Cancer 2009 Alexander BH, Ammonium perfluorooctanoate production and occupational mortality. e 57 o Cottage Grove Adults (n=3,993)
20(6):921-928. Cohort N Cancer Prostate Cancer Deaths PFOA
Olsen GW, et al. Minnesota
altered glucose homeostasis PFOS
Valvi, D., K Journal of Clinical increased beta-cell function PFOS
182 Endocrine 2021 Hm?l::d, é A Life-course exposure to perﬂuomalkyl .substances in relation to markers of glucose Endocrinol?gv & prospective Faroes Islands Both N=689 Endocrine
homeostasis in early adulthood. Metabolism cohort
Coull, et al. insulin sensitivity PFOS

106(8):2495-2504.




Type 1 diabetes (all) PFOA -
Adults (>20 years) PFOA -
Youth (<20 years) PFOA -
Type 2 diabetes PFOA -
Nn=820 with type 1 Adults (>20 years) PFOA -
J diabetes, 4,291 with Youth (<20 years) PFOA -
Ce B, I Diabet West Virgini d t 2 diabetes, 1,349 Uncat ized diabet PFOA °©
183 Diabetes 2016 SRy ) (S Perfluoroalkyl substances and beta cell deficient diabetes. @ _e e.s Cohort e |rg.|ma an Both yp.e abe es,. ’ Diabetes llcat eeonizedlilaue
KE, Long D. 2 Complications Ohio with uncategorized,  Type 1 diabetes (all) PFOS °
30(6):993-998. and 60,439 with no Type 2 diabetes PFOS B
diabetes Uncategorized diabetes PFHXS -
Type 1 diabetes (all) PFHxS -
Type 2 diabetes PFHxS -
Type 1 diabetes (all) PFNA -
Type 2 diabetes PFNA -
Fasting blood glucose PFOA +
Fasting insulin PFOA ¥
HOMA-IR PFOA +
HOMA-B PFOA +
HbA1c PFOA +
Gi | lati :
Cardenas A, Gold Plasma concentrations of per- and polyfluoroalkyl Environ Health 'n_:":_;'aasj::; lhoinh Fasting blood glucose PFOS +
184 Diabetes 2017 | DR, Hauser R, et substances at baseline and associations with glycemic indicators and diabetes incidence Perspect Cross sectional United States Adults ;isk of developin 8 Diabetes Fasting insulin PFOS +
al among high risk adults in the diabetes prevention program trial 125(10):107001. veloping HOMA-IR PFOS +
type 2 diabetes
HOMA-B PFOS +
HbAlc PFOS +
Fasting blood glucose PFNA +
Domazet SL, Longitudinal associations of exposure to .
L . S Diabetes Care Denmark (from the HOMA-B At
Grontved A, fluor d d f adiposity and [plitera® e @
185 Diabetes 2016 |_. rontve e n an an CERIEEITE 39(10):1745- Longitudinal European Youth CA n=501 Diabetes
Timmermann AG, glucose 1751 Heart Study)
etal. metabolism 6 and 12 years later: The European youth heart study. 7 Glucose at age 15 PFOS +
Fleisch AF, Rifas- Environ Health HOMA-IR PFOA -
186 Diabetes 2017 | Shiman SL, Mora Early-life exposure to perfluoroalkyl substances and childhood metabolic function. Perspect Cohort Massachusetts, US cA n=665 Diabetes HOMA-IR PFOS -
AM, et al. 125(3):481-487. HOMA-IR PFDeA -
) He X, LiuY, Xu B, | PFOA is associated with diabetes and metabolic alteration in US men: National Health and Sci Total Environ . . 5 5
187 Diabetes 2018 el Nutrition Examination Survey 2003-2012. 625:566-574. Cross-sectional us Adults n=7,904 Diabetes Diabetes PFOA +
Risk of estrogen receptor + tumors PFOS +
Tsai, M.-S., S.-H. . . Environment Risk of estrogen receptor + tumors PFHXS +
188 Cancer 2020 |Chang, W.-H. kuo, A case-control study of perfluoroalky! subz\:z::z: and the risk of breast cancer in Taiwanese International Cas;ﬁzntml Taiwan Adults N=239 Cancer
etal. ) 142:105850. v Risk of estrogen receptor - tumors PFNA -
Risk of estrogen receptor - tumors PFDA -
Type 2 diabetes PFOA +
. General population
0 q Environ Health .
189 Diabetes 2018 Sun Q, Zong G, Plasma.concentratlons of rferf.luoroa.\kvl.substances and risk of [ Case-Control us Adults (n=793 female cases Diabetes
ValviD, et al. type 2 diabetes: A prospective investigation among U.S. women. and 793 female Type 2 diabetes PFOS +
126(3):037001.
controls
Zh C, Fertil Steril
180 Diabetes 2015a Sundaar:imy R, A prospective study of prepregnancy serum .concentrations of perfluorochemicals and the risk| 1;3[‘1)::82- Cohort Michigan and Texas, Adults General population Diabetes Gestational diabetes PFOA .
3 of gestational diabetes. us (n=258
Maisog J, et al. 189
Insulin PFOS +
Lin CY, Chen PC, A iati fl Ikyl i { h i d Diabetes C: Adults n=969 HOMAIR PFOS Z
. in CY, Chen PC, ssociation among serum perfluoroalkyl glucose an iabetes Care . ults n= . -
191 Diabet 2009 Ci -sect | us Both Diabet -
labetes Lin YC, et al. syndrome in adolescents and adults 32(4):702-707. ross-sectiona °! Adolecents n=474 labetes [Pl i PFOS hd
Insulin PFNA i
B-cell function PFNA +
Fasting Glucose PFHxS +
General population Fasting Insulin PFHxS +
Jensen RC, . . . . Municipality of (n=158 pregnant HOMA-IR PFHxS +
Perfl Ikyl subst: d gl tat t Danish : The Od. Child |Ei Int 116:101. - n
192 Diabetes 2018 |Glintborg D, Gade ertiuoroalkyl substances and glycemic s a:iinﬂpregnan anish women: The Ociense Chi nviron In Cross-sectional | Odense, Region of Adults women with high risk Diabetes Fasting Insulin PFNA +




Timmermann CA

wonur

Southern Denmark

of gestational
diabetes mellitus)

HOMA-B PFNA +
Environ Health General population
. Nelson JW, Hatch Exposure to poly y and cl , body Perspect . (NHANES) (n=306 .
193 Diabet 2010 Cross-secti | us Both Diabet: HOMA (adol 1t PFHXS ©
\abetes EE, Webster TF. weight, and insulin resistance in the general U.S. population. 118(2):197- ross-sectiona °! adolescent and 524 fabetes (eetelesant X
202. adults)
Occupational (n=389
deaths) Reference
Gilliland and JO Med Ret ti Mii ta, United :
194 Cancer 1993 | O'pene el Mortality among employees of a perfluorooctanoic acid production plant. 35(;;20;“ Cohi::’fﬂ":;t':ﬁw e Adults ~ population: Cancer Prostate Cancer PFOA +
Minnesota general
population
PFOA +
Wielsoe M, Kern Serum levels of environmental pollutants is a risk Environ Health General population i £
195 Cancer 2017 P, Bonefeld- . " B Case-Control Greenland Adult (n=77 cases and Cancer Breast Cancer PFNA +
factor for breast cancer in Inuit: A case control study. 16(1):56
Jorgensen EC. 84 controls) PFDeA +
PFUA +
Wheezing PFOS -
Wheezing PFNA -
heezing PFUA B
Wheezing PFDoA -
Pnemonia and RSV infection PFOS +
Rhino-conjunctivitis PFNA -
Birth Outcomes; Ait Bamai, Y., H. | Effect of prenatal exposure to per- and polyfluoroalkyl substances on childhood allergies and Environment Longitudinal 122689 (mother-child Birth Of Rhi J it PFDoA
196 Development; 2020 | Goudarzi, A. Arak common infectious diseases in children up to age 7 years: The Hokkaido study on International birtf\ cohort Japan CA B airs) Dy !no-conjunc vitls e
Immune etal. environment and children’s health 143:105979 P Immune Chicken Pox PFDoA hd
Pneumonia PFOA +
Eczema PFDoA
Eczema PFUA -
Eczema PFOA -
Arbuckle, T. E., S. Reproductive
. . . . Toxicology n=401 (205 male, 196 . . .
197 Reproductive 2020 | MacPherson, W. | Prenatal per and newborn distance in a Canadian cohort Cohort Canada CA Reproductive Anogenital Distance PFOA +
G. Foster, et al (EImsford, NY) female newborn)
) ! ) 94:31-39
Primary ovarian insufficiency PFOA +
The Journal of - P— "
Clinical Primary ovarian insufficiency PFOS +
Zh S, R.T Associati f perfl Ikyl and polyfl Ikyl subst: ith it i
198 Reproductive 2018 ané, 5. B Tan, ssociation of perfiuoroalkyl and polyPuoroalkyl substances with premature ovarian Endocrinology and |  case control Nanjing , China Adults N=240 Reproductive
R. Pan, etal. insufficiency in Chinese Women. ;
Metabolism Primary ovarian insufficiency PFHXS +
103(7):2543-2551.a
Beck. I H., C. A. G Environmental
199 Immune; 2019 Tim;n’err.r;arvm,.F.l Association between prenatal e‘xposulte to perfluoroalkyl substances and asthma in 5-year-old| Health: A slobal Cohort D— @ n=981 rno'ther—child Immune; nsthma A .
Developmental Nielsen, et al children in the Odense Child Cohort Access Science pairs Developmental
' . Source 18(1):97
e ' Endocrine TSH PFOS +
i t:
Blake, B. E., S. M. A ions between serum per yl substance (PFAS) levels and nvironmenta _— eGFR PFNA -
) ) ) . . . Pollution (Barking, Longitudinal n=210 general
200 Endocrine; Renal 2018 Pinney, E. P. measures of thyroid hormone, kidney function, and body mass index in the Fernald Ohio, USA Adult . eGFR PFHxS -
Hines, et al Community Cohort Essex 1987) cohort population Renal
s etal v 242(P):894-904 eGFR PFDeA -
eGFR PFOSA +
Pregnancy Preeclampsia PFHxS +
Gestational Hypertension (carrying PFOS .
male fetus only)
Gestational Hypertension (carrying PFHXS .
male fetus only)
Systolic Blood Pressure PFOA +
Diastolic Blood Pressure PFOA +
Diastolic Blood Pressure PFOSA 5
. Systolic Blood Pressure PFHxS +
Pregnancy; ey U A of ith i hypertension and preeclampsia in Environment n=1739 pregnant Diastolic Blood P! PFHxS
201 Cardiivasc:;ar 2020 | M. Walker, M. E. L ' the“l(IIIREC ] o ! o (= International Cohort Canada Adults - wor:ef Cardi I !as o{c 00C Pressure - X *
Helewa, etal. ly 141:105789 ardiovascular Diastolic Blood Pressure (carrying PEOA .

male fetus only)




Diastolic Blood Pressure (carrying PEOS .
male fetus only)
Systolic Blood Pressure (carrying PFOA .
female fetus only)
Systolic Blood Pressure (carrying PFHXS .
female fetus only)
Diastolic Blood Pressure (carrying PFHXS .
female fetus only)
Lower BMI PFOS +
Braun, J. M., M. Lower BMI PFHXS +
Birth Eliot, G. D. Gestational perfluoroalkyl substance exposure and body mass index trajectories over the first| IntJ Obes (Lond). " n=345 mothers with N Greater Increases in BMI PFOA +
202 2021 Cohort United Stats Both Obesit:
Outcomes/Obesity Papandonatos, 1. 12 years of life 2021 Jan;45(1):25-3 oner nited States © singleton child esity
P. Buckley, et al. Higher BMI PFOA +
Birth Length PFOA -
Umbilical Circumference PFHxS =
Upper Arm Length PFDeA
Birth Length PFOSA +
Umbilical Circumference PFDoDA 5
Umbilical Circumference PFHpA
Upper Thigh Length PFDeA -
Upper Thigh Length PFDODA -
Upper Thigh Length PFDS -
Buck Louis, G. M., Environment n=2106 pregnant Upper Thigh Length PFHDA n
203 Birth Outcomes 2018 S.Zhai, M. M. | Endocrine disruptors and neonatal anthropometry, NICHD Fetal Growth Studies—Singletons International Cohort United States Both women and Birth Outcomes 13 .g 3 2
) Upper Thigh Length PFHxS -
Smarr, et al. 119:515-526 newborns
Upper Thigh Length PFNA -
Upper Thigh Length PFOA -
Upper Thigh Length PFUNDA -
Diabetes Risk Sb-PFOA +
Card A, M- N " . Diabetes
Diabetes; ardenas Associations of perfluoroalkyl and polyfluoroalkyl substances with incident diabetes and Diabetes Care Prospective ) =957 DPP Diabetes Risk (Placebo Group only) SB-PFOA +
204 N 2019 | F.Hivert, D.R. . ) United States Adult
Cardiovascular microvascular disease 42(9):1824-1832 Cohort participants
Gold, et al. Prevalent microvascular disease
Cardiovascular . PFOS +
(Lifestyle Group only)
ant!-cvcllc citrullinated peptide PFOA .
antibody
. N N . . . Chemosphere, 298, antibody PFESA +
205 Immune 2022 Zhao, Y., Liu, W., | Per-/polyfluoroalkyl subsfance concentrations in humar\ serurr! ﬁnd their associations with art. no. 134338, Cohort Hangzhou, China Adults N=294 |mmune inG PFOA +
Qu, J., etal. immune markers of rheumatoid arthritis =
2022 Immunoglobulin G PFESA +
in G PFOA +
Rheumatoid factors PFESA +
Atopic Dermatitis (female children PFOA .
only)
Chen, @ R. ) . ) ) Atopic Dermatitis (female children PFDeA .
Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and childhood atopic Environ Health. [Prospective Birth . n=687 baby-mother only)
206 Immune 2018 | Huang, L. Hua, et . . . China Both . Immune
al dermatitis: A prospective birth cohort study 2018 Jan 17;17(1):8 Cohort pairs Atopic Dermatitis (female children PFDOA
2 +
only) o
Atopic Dermatitis (female children PFHxs .
only)
Waist Circumference (females only) PFBS +
Waist to Height Ratio (females only) PFBS +
Chen, Q. X Fat Mass (females only) PFBS +
Birth v Prenatal exposure to per ic acid and childhood adiposity: A pre Chi h Prospective Birth . n=404 mothers and 5 Higher Body Fat Percentage
207 2019 |zh: Y. zh: i Chi Both Obesit:
Outcomes/Obesity ang, o ERGE birth cohort study in Shanghai, China 226:17-23 Cohort ina © children esity (females only) S *
Waist Circumference (females only) PFDoA +
Lower Body Fat Percentage PFDOA .
(females only)
Fat Mass (females only) PFDoA +




wny, ¢, Y. Znou,

Environment

.-Q. Li, M. S. =372 mother-child
208 Birth Outcomes 2020 BIQooi\ SI' Lin, et Are perfluorooctane sulfonate alternatives safer? New insights from a birth cohort study International Birth Cohort China Both " Z‘oadser et Birth Outcomes Higher Risk for Preterm Birth PFOS
o 135:105365 v
Cohn, B.A,, M. A. Reproductive n=102 cases
La Merrill, N. Y. N (daughters of
Birth In uts t ly- and y PFAS: d bl t T I Nested Case- . . . i i
209 ! 2020 Krigbaum, M. 10 B @RI (el el P ( Hem reas AR ested Case United States Both mothers in original Cancer Risk of Breast Cancer in Daughter PFOS
Outcomes/Cancer Wang, J.-S. Park cancer (EImsford, NY) control cohort) and n=310
UL 92:112-119 =
etal. controls
The Journal of Natfira\ Menopause Occurrence n-PFOS
Ding, N., S. D. Clinical Earlier
210 Reproductive 2020 Harlow, J. F. Associations of perfluoroalkyl substyances with incident natural menopause: The Study of Endocrmolo.gy and Prospective United States Adult 121120 women Reproductive Natfira\ Menopause Occurrence Sm-PFOS
Randolph, A. M. women’s health across the nation Metabolism Cohort Earlier
Calafat, etal. 105(9):e3169-e318 Natural Menopause Occurrence
y n-PFOA
2 Earlier
X EV71 Antibody Concentration PFOA
The Science of the EV71 Antibody Concentration PFOS
i q q a total environment, . = —
Zeng, Bloom Prenatal Exposire to perfluoroalkyl subsatnces is associated with lower hand, foot and mouth 663, 60-67. Guangzhou, China N=201 mother-child EV71 Antibody Concentration PFDA
211 Immune 2019 & ’ disease viruses antibody response in infancy: Findings from the Guangzhou Birth Cohort S B birth cohort (Guangdong Both B N Immune EV71 Antibody Concentration PFNA
Dharmage, et.al. Studh https://doi.org/10.1} Province) pairs - -
Y 016/.scitotenv.201 CA16 Antibody Concentration PFOA
9.01.325 CA16 Antibody Concentration PFOS
Triglycerides PFOA
Donat-Vargas, C., e . cohort Triglycerides PFOS
12 Hepatic 2019 | A BerBdahl A. Associations between repeated measre of plasma perfluoroalkyl substances and o | Moo o sweden adur | =187 aduits from Hepatic Triglycerides PFNA
Tornevi, M. cardiometabolic risk factors 124:58-65 control the control group Triglycerides PFHxS
Wennberg, et al. ) Triglycerides PFDeA
Triglycerides PFUA
Eafller Age for Onset of Puberty PEOS
(girls only)
Eafller Age for Onset of Puberty PEHPS
(girls only)
Eafller Age for Onset of Puberty PENA
(girls only)
Eritornental Ea.rlier Age for Onset of Puberty PFDeA
Andreas Ernst , Health Perspective (girls only)
Development/Repro Nis Brix , Lea Exposure to Perfluoroalkyl Substances during Fetal Life and Pubertal Development in Boys 2019 Development/Repro
213 2019 Cohort D¢ k Both =722 and b=445
ductive Lykke Braskhgj and Girls from the Danish National Birth Cohort Jan;127(1):17004. ohol enmar o! n an ductive
Lauridsen , et al. doi:
’ Earlier Age for Onset of Pubert,
10.1289/EHP3567. ariier Age for Onset of Puberty PFHpS
(boys only)
Later Age for Onset of Puberty PFDeA
(boys only)
Later Age for Onset of Puberty PENA
(boys only)
N n Maternal Weight PFOS
Ke Gao, Taifen Prenatal Exposure to Per- and Poly y (PFASs) and A between Environ. Sci. =132 paired mother
214 Birth Outcomes 2019 ! 8 the Placental Transfer Efficiencies and Dissociation Constant of Serum Proteins-PFAS Technol. 2019, 53, Cohort China Both o P N Birth Outcomes
Zhuang, etal. and children Birth Length PFBA
Complexes 11, 6529-6538
Philippe PLoS One. 2020 Dec|
Grandjean, Clara 31;15(12):e024481 .
y . . n=323 subjects aged )
215 Immune 2020 Amalie Gade Severity of COVID-19 at elevated exposure to perfluorinated alkylates 5. doi: Cohort Denmark Adult 30-70 Immune COVID-19 Severity PFBA
Timmermann , 10.1371/journal.po
Marie Kruse, et al. ne.0244815
i i Birth Weight PFOS
Birth Gross, R.S., A. . : : : | Environmental ~ " Birth
216 |Outcomes/Developm| 2020 | Ghassabian, s. Persistent organic pollutants exposure in newborn dried blood Spot? and infant weight status: Pollution Nested Case- United States Both n=98 mother-child Outcomes/D
. A case-control study of low-income Hispanic mother-infant pairs. control pairs
ent Vandyousefi,et al. 267:115427 ent Birth Weight PFHXS




[ADHD PFNA
Hormones and
Hoyer, B.8., J.P Behavior
U |E t fl Ikyl subst: duri d child behavi t5to9 f|  101:105-112. =1023 mother-child
217 Developmental 2018 Bonde, S.S. xposure to perfiuoroalkyl substances during pregnancy and child behaviour at > to 3 years o . Cohort Greenland, Ukraine Both " mo. erech Developmental
Tottenborg, et al. age. https://doi.org/10.1| pairs ADHD PFDeA
8 etal 016/j.yhbeh.2017.1
1.007
Bone Mineral Density in the Spine PFOS
Bone Mineral Density in the Spine PFOA
Bn.sne Mineral Density in the Total PFOA
Hip
Bone Mineral Density in the PFOA
Femoral Head
Bone Mineral Density in Total Hip PFOS
(2 year follow up)
Bone Mineral Density in Total Hi
Prospective ! ity i L PFNA
Hy, Y., G. Liu, J Environmental Analysis from (2 year follow up)
u, Y., G. Liy, J. . . . . Vil lysi " —— -
Perfl Ikyl subst: d ch: by | density: A ti I th =811 aged 30-70
218 Musculoskeletal 2019 | Rood, L. Liang, et erfluoroalky! substances and ang;g[';\mgnfog_nii ensity: A prospective analysis in the Research Randomized United States Adult " aeg;S Musculoskeletal (Bzone Mfln:ral De;\snty in Total Hip PFDeA
al. v 179(P):108775 Dietary v year foTow up,
Intervention Trial Bone Mineral Density in Hip
Intertrochanteric Area (2 year PFOS
follow up)
Bone Mineral Density in Hip
Intertrochanteric Area (2 year PFOA
follow up)
Bone Mineral Density in Hip
Intertrochanteric Area (2 year PFDeA
follow up)
Bone Mineral Density in Hip
Intertrochanteric Area (2 year PFNA
follow up)
H R, Q. =674 t Preeclampsi: PFBS.
BENigh @) Prenatal exposure to perfluoroalkyl and polyfluoroalkyl substances and the risk of Health: A Global . . " pregnan. e amp.sla -
219 Pregnancy 2019 |Chen, L. Zhang, et gy . Cross-sectional China Both women and their Pregnancy Hypertensive Disorders of
hypertensive disorders of pregnancy. Access Science _ PFBS
el 1e011.8 child Pregnancy
Atopic Eczema (girls only) PFUA
Common Cold (age 0-3 years) (girls PFOS
only)
Common Cold (age 0-3 years) (girls PFOA
only)
Bronchitis/pneumonia (age 0-3 PFOS
years)
Bronchlt\.s/pneumoma (age 0-3 PFOA
years) (girls only)
Bronchlt\.s/pneumoma (age 6-7 PENA
years) (girls only)
Throat Infection with Strep (age 0-3 PENA
years)
Impinen, A., M. P.| Maternal levels of perfluoroalkyl substances (PFASs) during pregnancy and childhood allergy Environment =143 mother-child Throat Infection with Strep (age 0-3 PFOA
220 Immune 2019 | Longnecker, U. C. and asthma related outcomes and infections in the Norwegian Mother and Child (MoBa) International Cohort Norway Both B airs Immune years) (boys only)
Nygaard, et al. cohort. 124:462-472 P Throat Infection with Strep (age 0-3 PEUA
years) (boys only)
Pseudocroup (age 0-3 years) PFOA
Pseudocroup (age 0-3 years) PFUA
Ear Infection (age 0-3 years) PFOS
Ear Infection (age 0-3 years) PFUA
Dl.arrhea/gasmc flu (age 0-3 years) PENA
(girls only)
Diarrhea/gastric flu (age 6-7 years) PFOA
Urinary Tract Infection (age 0-3 PFOS
years) (girls only)
Urinary Tract Infection (age 0-3 PFOA
years) (girls only)
Free T3 (Thyroid Antibody Positive PENA
Mothers only)
Thyroid Peroxidase Antibody (all PEOA
mothers)
TSH (male offspring only) PFOS




TSH (male offspring only) (Thyroid

PFOS
Antibody Negative Mothers only) *
TSH (male offspring only) (Thyroid PFDeA
Itoh, S., A. Araki Antibody Positive Mothers only)
c I\}Iiv-lasr;ita K' Association between perfluoroalkyl substance exposure and thyroid hormone/thyroid
Dy S ) antibody levels in maternal and cord blood: The Hokkaido Study. TSH (male offspring only) (Thyroid oFDeA i
Endocrine Antibody Negative Mothers only)
Free T3 (male offspring only)
(Thyroid Antibody Negative PFUA -
Mothers only)
. Free T3 (male offspring only)
Environment
=701 mother- Devel t/End i i i -
221 2019 International Cohort Japan Both nneona:r: aiE:': eve op:\:: fiEeE f\;h‘:?'d An‘tlbody Blegatie REOS
133(P):105139. P OtheTSIontY)
TSH (female offspring only)
(Thyroid Antibody Negative PFDoOA -
Mothers only)
TSH (female offspring only)
(Thyroid Antibody Negative PFDeA +
Mothers only)
Free T4 (female offspring only)
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